DOI QR코드

DOI QR Code

Novel polyvinyl alcohol film dosimeter containing 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye for high dose application

  • Khalid A. Rabaeh (Medical Imaging Department, Faculty of Applied Medical Sciences, The Hashemite University) ;
  • Ahmed A. Basfar (Mechanical Engineering Department, College of Engineering, King Saud University) ;
  • Issra' M.E. Hammoudeh (School of Basic Sciences and Humanities, German Jordanian University)
  • Received : 2022.09.20
  • Accepted : 2023.06.05
  • Published : 2023.09.25

Abstract

A new dyed polyvinyl alcohol (PVA) film dosimeter based on 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MMT) tetrazolium dye is proposed in this study for measuring high gamma radiation dose. Gamma cell irradiator that contains Co-60 gamma-ray source was used to expose the novel MMT-PVA films to different doses up to 25 kGy. The changed in optical property of irradiated and unirradiated films were characterized by UV-Vis spectrophotometer. The results show that the dose sensitive and the linear range of irradiated films were increased considerably with increase of MMT concentration from 1 to 5 mM. The dose response of dyed PVA film changed substantially with changing relative humidity (12-74%) as well as irradiation temperature (10-40 ℃). The absorbance of the unirradiated films does not change up to 10 days in dark while a significant increase in their absorbance was reported for similar films under fluorescent light. The irradiated dosimeters that kept in dark showed a perfect stability for 54 days. It was found that no obvious impact of dose rate on the irradiated MMT-PVA film dosimeters.

Keywords

Acknowledgement

This work was supported by King Abdulaziz City for Science and Technology (KACST), KSA (grant 10-BIO960-20).

References

  1. Y.S. Soliman, W.B. Beshir, A.A. Abdel-Fattah, et al., Radiation-induced coloration of xylenol blue/film containing hexachloroethane for food irradiation applications, J. Radioanal. Nucl. Chem. 310 (2016) 117-124. https://doi.org/10.1007/s10967-016-4747-z
  2. P. Widodo, Y. Priasetyono, M. Harahap, A. Listyarini, D. Djuhana, C. Imawan, Radiochromic film label made from Chitosan and Taraxacum officinale leaf extract, J Phys. Conf Ser Mater Sci Eng. 496 (2019), 012006.
  3. A. Doyan, S. Susilawati, S. Prayogi, M.R. Bilad, M.F. Arif, N.M. Ismail, Polymer film blend of polyvinyl alcohol, trichloroethylene and cresol red for gamma radiation dosimetry, Polymers 13 (2021) 1866.
  4. B. Moftah, A.A. Basfar, A.A. Almousa, A. Al Kafi, K.A. Rabaeh, Novel 3D polymer gel dosimeters based on N-(3-Methoxypropyl)acrylamide (NMPAGAT) for quality assurance in radiation oncology, Radiat. Meas. 135 (2020), 106372.
  5. M. Ioan, An innovative idea for developing a new gamma-ray dosimetry system based on optical colorimetry techniques, Nucl. Eng. Technol. 50 (3) (2018) 519-525, https://doi.org/10.1016/j.net.2018.01.007.
  6. K. Pradeep Kumar, G. Shanmugha Sundaram, B. Sharma, S. Venkatesh, R. Thiruvengadathan, Advances in gamma radiation detection systems for emergency radiation monitoring, Nucl. Eng. Technol. 52 (10) (2020) 2151-2161. https://doi.org/10.1016/j.net.2020.03.014
  7. A. Miller, A. Kovas, Application of calorimeters for routine and reference dosimetry at 4-10 MeV industrial electron accelerators, Int J Radiat Appl Instrumentation 35 (1990) 774-778.
  8. S.M. Gafar, N.M. Abd El-Kader, Dosimetric characteristics and applications of crosslinking and degradation of a natural biopolymer Gum Acacia, Radiochim. Acta 108 (3) (2020) 223-229. https://doi.org/10.1515/ract-2019-3170
  9. S.M. Gafar, N.M. Abd El-Kader, T.M. Mohamed, Radiation-induced Bismuth nanoparticles and its possible use as radiation dosimeter, Radiat. Eff. Defect Solid 175 (5-6) (2020) 529-539. https://doi.org/10.1080/10420150.2019.1691552
  10. H. Al-Ghamdi, K. Farah, A. Almuqrin, F. Hosni, FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements, Nucl. Eng. Technol. 54 (1) (2022) 255-261. https://doi.org/10.1016/j.net.2021.07.023
  11. I. El Gamal, C. Cojocaru, E. Mainegra-Hing, M. McEwen, The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy, Phys. Med. Biol. 60 (2015) 4481-4495. https://doi.org/10.1088/0031-9155/60/11/4481
  12. U. Susilawati, A. Doyan, Dose response and optical properties of dyed poly vinyl alcohol-trichloroacetic acid polymeric blends irradiated with gammarays, Am. J. Appl. Sci. 6 (2009) 2071-2077. https://doi.org/10.3844/ajassp.2009.2071.2077
  13. Y.S. Soliman, W.B. Beshir, M.H. Abdelgawad, E. Brauer-Krisch, A.A. Abdel-Fattah, Pergascript orange-based polymeric solution as A dosimeter for radiotherapy dosimetric validation, Phys. Med. 57 (2019) 169-176. https://doi.org/10.1016/j.ejmp.2019.01.005
  14. M. Harahap, P. Widodo, Y. Priasetyono, A. Listyarini, D. Djuhana, C. Imawan, A simple gamma dosimeter using a film label made of polyvinyl alcohol and bark of Peltophorum ferrugineum extract, IOP Conf. Ser. Mater. Sci. Eng. 496 (2019), 012041.
  15. M.A. Ali, E. Saion, Y. Noorhana, A. Kassim, K.M. Dahlan, K.A. Rabaeh, A. K, I. Shahrim, S. Hashim, Chemical modification and control of polyaniline nanocomposites conductivity by radiation technique in PVA matrix, J. Eng. Sci. Technol. 2 (3) (2007) 280-289.
  16. M. Mohammadian-Kohol, M. Nasrabadi, A. Navarchian, I. Jabbari, M. Seyedhabashi, A study of the effects of gamma irradiation on the structural and mechanical properties of polyvinyl butyral film, Radiat. Phys. Chem. 152 (2018) 1-5. https://doi.org/10.1016/j.radphyschem.2018.07.014
  17. E. Saion, Susilawati, A. Doyan, S. Zainal Abidin, Z. Azmi, A. Zulkfli, A.R.M. Zaki, K.Z.H. Dahlan, T. Karni, Changes in the optical band gap and absorption edge of gamma-irradiated polymer blends, J. Appl. Sci. 5 (2005) 1825-1829. https://doi.org/10.3923/jas.2005.1825.1829
  18. A.A. Abdel-Fattah, Y.S. Soliman, A.M.M. Bayomi, A.A. Abdel-Khalek, Dosimetric characteristics of a radiochromic polyvinyl butyral film containing 2,4-hexadiyn- 1,6- bis(n-butyl urethane), Appl. Radiat. Isot. 86 (2014) 21-27. https://doi.org/10.1016/j.apradiso.2013.12.023
  19. D. El-Malawy, M. Al-Abyad, M. El Ghazaly, S. Abdel Samad, H.E. Hassan, γ-ray effects on PMMA polymeric sheets doped with CdO nano particles, Radiat. Phys. Chem. 184 (2021), 109463.
  20. K.A. Rabaeh, A.A. Basfar, A polystyrene film dosimeter containing dithizone dye for high dose applications of gamma-ray source, Radiat. Phys. Chem. 170 (2020), 108646.
  21. K.A. Rabaeh, A. Basfer, Optical evaluation of dithizone solution as a new radiochromic dosimeter, Pigment Resin Technol. 49 (4) (2020) 249-253. https://doi.org/10.1108/PRT-10-2019-0091
  22. W. Chairunisa, C. Imawan, The radiochromic indicator using methyl red dye solution as a high-dose gamma-ray dosimeter application, IOP Conf. Ser. Mater. Sci. Eng. 763 (2020), 012075.
  23. A. Al Zahrany, K.A. Rabaeh, A. Basfar, Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter, Radiat. Phys. Chem. 80 (11) (2011) 1263-1267. https://doi.org/10.1016/j.radphyschem.2011.06.001
  24. A. Al Zahrany, K. Rabaeh, M. Eyadeh, A. Basfar, Dosimetric evaluation of methyl red radiochromic film for radiation processing, Pigment Resin Technol. 50 (2) (2021) 157-162. https://doi.org/10.1108/PRT-02-2020-0008
  25. F.M. Aldweri, K.A. Rabaeh, K.N. Al-Ahmad, Novel radiochromic dosimeters based on Calcein dye for high dose applications, Radiat. Phys. Chem. 139 (2017) 1-4. https://doi.org/10.1016/j.radphyschem.2017.05.007
  26. Y. Soliman, A. Basfar, R. Msalam, A radiochromic film based on leucomalachite green for high-dose dosimetry applications, Radiat. Meas. 62 (2014) 45-51. https://doi.org/10.1016/j.radmeas.2014.01.004
  27. F.M. Aldweri, M.H. Abuzayed, M.S. Al-Ajaleen, K.A. Rabaeh, Characterization of Thymol blue Radiochromic dosimeters for high dose applications, Results Phys. 8 (2018) 1001-1005.
  28. N. Magdy, S.M. Gafar, Development of two dosimetry systems based on basic violetdye for possible use as radiation dosimeters, Pigment Resin Technol. 51 (2) (2021) 204-211. https://doi.org/10.1108/PRT-11-2020-0118
  29. A.K. Pikaev, Z.K. Kriminskaya, Use of tetrazolium salts in dosimetry of ionizing radiation, Radiat. Phys. Chem. 52 (1998) 555-561. https://doi.org/10.1016/S0969-806X(98)00094-2
  30. K.A. Rabaeh, A. Basfar, A.A. Moussa, R.I. Msalam, Novel Radio-chromic solution dosimeter for radiotherapy treatment planning, Phys. Med. 29 (2013) 374.
  31. A. Kovacs, I. Slezs ak, W.L. McLaughlin, A. Miller, Oscillometric and conductometric analysis of aqueous and organic dosimeter solutions, Radiat. Phys. Chem. 46 (1995) 1211-1215. https://doi.org/10.1016/0969-806X(95)00357-4
  32. A. Kovacs, I. Slezs ak, W.L. McLaughlin, A. Miller, Oscillometric and conductometric analysis of aqueous and organic dosimeter solutions, Radiat. Phys. Chem. 46 (1995) 1211-1215. https://doi.org/10.1016/0969-806X(95)00357-4
  33. G. Emi-Reynolds, A. Kovacs, J.J. Fletcher, Dosimetry characterization of tetrazolium violet-polyvinylalcohol films, Radiat. Phys. Chem. 76 (2007) 1519-1522. https://doi.org/10.1016/j.radphyschem.2007.02.064
  34. A. Moussa, M. Baranyai, L. Wojnarovits, A. Kov acs, W.L. McLaughlin, Dosimetry characteristics of the nitro blue tetrazolium-polyvinylalcohol film for high dose applications, Radiat. Phys. Chem. 68 (2003) 1011-1015. https://doi.org/10.1016/j.radphyschem.2003.09.003
  35. A. Basfar, K.A. Rabaeh, A.A. Moussa, R.I. Msalam, Dosimetry characterization of nitro-blue tetrazolium polyvinyl butyral films for radiation processing, Radiat. Phys. Chem. 80 (6) (2011) 763-766. https://doi.org/10.1016/j.radphyschem.2011.01.011
  36. A. Basfar, K.A. Rabaeh, A. Moussa, Improved performance of nitro-blue tetrazolium polyvinyl butyral high dose film dosimeters, Radiat. Meas. 47 (2012) 1005-1008. https://doi.org/10.1016/j.radmeas.2012.07.008
  37. K.A. Rabaeh, A.A. Basfar, A.A. Moussa, Enhancement in sensitivity of nitro blue tetrazolium polyvinyl alcohol film dosimeters by sodium formate and Triton X-100, Radiat. Phys. Chem. 81 (2012) 479e483.
  38. K.A. Rabaeh, S.A. Aljammal, M.M. Eyadeh, K.M. Abumurad, Methyl thymol blue solution and film dosimeter for high dose measurements, Results Phys. 23 (2021), 103980.
  39. H. Levine, W.L. Mclaughlin, A. Miller, Temperature and humidity effects on the gamma-ray response and stability of plastic and dyed plastic dosimeters, Radiat. Phys. Chem. 14 (1979) 551-574.
  40. ASTM, Practice for use of the alanine-EPR dosimetry system, in: Ssandards on Dosimetry for Radiation Processing, second ed., ASTM International, West Conshohocken, PA, 2004. ASTM 51607.
  41. P.H.G. Sharpe, A. Miller, J.P. Sephton, C.A. Gouldstone, M. Bailey, J. Helt-Hansen, The effect of irradiation temperatures between ambient and 80 ℃ on the response of alanine dosimeters, Radiat. Phys. Chem. 78 (2009) 473-475. https://doi.org/10.1016/j.radphyschem.2009.03.028
  42. K. Farah, F. Kuntz, O. Kadri, L. Ghedira, Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation, Radiat. Phys. Chem. 71 (1-2) (2004) 339-343. https://doi.org/10.1016/j.radphyschem.2004.05.041
  43. P. Casolaro, Radiochromic films for the two-dimensional dose distribution assessment, Appl. Sci. 11 (5) (2021) 2132.
  44. C.G. Orton, Red perspex dosimetry, Phys. Med. Biol. 11 (4) (1966) 551-562, 305. https://doi.org/10.1088/0031-9155/11/4/305