• Title/Summary/Keyword: immunosensors

Search Result 14, Processing Time 0.025 seconds

Rapid Detection of Cadmium-Resistant Plant Growth Promotory Rhizobacteria: A Perspective of ELISA and QCM-Based Immunosensor

  • Agrawal, Ruchi;Satlewal, Alok;Chaudhary, Manav;Verma, Amit;Singh, Rachna;Verma, A.K.;Kumar, Rajesh;Singh, K.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.849-855
    • /
    • 2012
  • Plant growth-promoting rhizobacteria (PGPR) pseudomonads have a large number of lipopolysaccharides on the cell surface, which induces immune responses. Cd-resistant PGPR prevalent at the Cd-affected sites under biophytostabilization was monitored. Transmissiom electron microscopy was used to the study the behavior of tolerance of PGPR to cadmium level and its effect on pseudomonad strains (Z9, S2, KNP2, CRPF, and NBRI). An immunosensor was developed by immobilizing antibody (anti-Z9 or anti-S2) against selected PGPR on a piezoelectric quartz crystal microbalance (QCM). Immunosensors were found to supplement the inherent specificity of antigen-antibody reactions with the high sensitivity of a physical transducer. On comparison of the efficiency of detection with ELISA, the spectrophotometric technique, the developed immunosensor was found to be more sensitive, fast, and reliable even after regeneration for several times. Thus, the immunosensor may be used for future detection of PGPR strains after automation of the screening process.

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Production and Characterization of Monoclonal Antibodies Specific to PAT Protein Expressed in Genetically Modified Herbicide-Resistance Maize (제초제 내성 유전자 변형 옥수수 중 PAT단백질에 특이한 단크론성 항체의 생산과 특성 확인)

  • Kim, Sol-A;Lee, Jeong-Eun;Shim, Won-Bo;Kang, Sung-Jo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2018
  • In this study, PAT protein of genetically modified maize was prepared from the recombinant E. coli strain BL21 (DE3), and mice were immunized with the recombinant PAT protein. After cell fusion and cloning, two hybridoma cells (PATmAb-7 and PATmAb-12) were chosen since the monoclonal antibodies (Mabs) produced by them were confirmed to be specific to PAT protein in the indirect enzyme-linked immunsorbent assay (ELISA) and western blot tests. There were no cross-reactions of either Mabs to other GM proteins or to the extracts of non-GM maize. The ELISA based on the PATmAb-7 can sensitively detect 0.3 ng/g PAT protein in corn. These results indicate that the developed Mabs can be used as bio-receptors in the development of immunosensors and biosensors for the rapid and simple detection of GM corn adulterated in foods.