• Title/Summary/Keyword: immunoprecipitation

Search Result 300, Processing Time 0.026 seconds

Kinesin Superfamily KIF5 Proteins Bind to ${\beta}III$ Spectrin

  • Paik, Jae-Eun;Kim, Na-Ri;Yea, Sung-Su;Jang, Won-Hee;Chung, Joon-Young;Lee, Sang-Kyoung;Park, Yeong-Hong;Han, Jin;Seog, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.167-172
    • /
    • 2004
  • The kinesin proteins (KIFs) make up a large superfamily of molecular motors that transport cargo such as vesicles, protein complexes, and organelles. KIF5 is a heterotetrameric motor that conveys vesicles and plays an important role in neuronal function. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tail region of KIF5 and found a specific interaction with ${\beta}III$ spectrin. The amino acid residues between 1394 and 1774 of ${\beta}III$ spectrin were required for the interaction with KIF5C. ${\beta}III$ spectrin also bound to the tail region of neuronal KIF5A and ubiquitous KIF5B but not to other kinesin family members in the yeast two-hybrid assay. In addition, these proteins showed specific interactions, confirmed by GST pull-down assay and co-immunoprecipitation. ${\beta}III$ spectrin interacted with GST-KIF5 fusion proteins, but not with GST alone. An antibody to ${\beta}III$ spectrin specifically co-immunoprecipitated KIF5s associated with ${\beta}III$ spectrin from mouse brain extracts. These results suggest that KTF5 motor proteins transport vesicles or organelles that are coated with ${\beta}III$ spectrin.

Expression of OB-R, Regulation of Mitogen Activated Protein Kinase Activity and Maturation by Leptin in Mouse Oocytes (생쥐 난자 및 초기배아에서 Leptin 수용체 발현 및 Leptin에 의한 Mitogen Activated protein Kinase 활성의 조절 및 난자의 성숙 조절)

  • Kang, Byung-Moon;Han, Hyun-Joo;Seo, Hye-Young;Hong, Suk-Ho;Gye, Myung-Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Objective: To verify the expression of leptin receptor (OB-R) in oocytes and preimplantation embryos, the involvement of mitogen activated protein kinase (MAPK or Erk1/2) in the leptin signaling, and effect of leptin on the oocyte maturation in mice. Method: RT-PCR analysis of OB-R was conducted in germinal vesicle (GV)-intact and MII stage oocytes, and 1, 2, 8-cell embryos and blastocysts. Germinal vesicle breakdown (GVB), polar body extrusion, monitored in the presence or absence of leptin ($1{\mu}M$). Following the leptin treatment, temporal changes in MAPK activity were verified by immunoprecipitation and in vitro kinase assay in MII oocytes. Results: The expression of OB-R mRNA was found in GV and MII oocyte but not in the embryos. MAPK activity of the MII oocytes was significantly increased by brief incubation in the HTF supplemented with leptin ($1{\mu}M$). Priming of PD098059, a MEK inhibitor to leptin treatment attenuated the activation of MAPK by leptin in MII oocytes. Following 24 hrs of culture of the GV oocytes, leptin significant increased the GVB and 1 st polar body extrusion. Conclusion: This result suggested that functional interaction between leptin and OB-R resulted in potentiation of MAPK (Erk1/2) activity in MII oocytes through MEK activation and that leptin might be a local regulator of meiotic maturation of the mouse oocytes.

  • PDF

Aflatoxin B1 Promotes Cell Growth and Invasion in Hepatocellular Carcinoma HepG2 Cells through H19 and E2F1

  • Lv, Jun;Yu, Ya-Qun;Li, Shu-Qun;Luo, Liang;Wang, Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2565-2570
    • /
    • 2014
  • H19 is an imprinted oncofetal gene, and loss of imprinting at the H19 locus results in over-expression of H19 in cancers. Aflatoxin B1(AFB1) is regarded as one of the most dangerous carcinogens. Exposure to AFB1 would most easily increase susceptibility to diseases such as hepatocellular carcinoma(HCC) but any possible relationship between AFB1 and H19 is not clear. In present study, we found that AFB1 could up-regulate the expression of H19 and promote cell growth and invasion by hepatocellular carcinoma HepG2 cells. Knocking down H19 RNA co ld reverse the effects of AFB1 on cell growth and invasion. In addition, AFB1 induced the expression of E2F1 and its knock-down could down-regulate H19 expression and suppress cell growth and invasion in hepatocellular carcinoma HepG2 cells. Furthermore, E2F1 over-expression could up-regulate H19 expression and promote cell growth and invasion, with binding to the H19 promoter being demonstrated by chromatin immunoprecipitation assays (ChIP). In summary, our results suggested that aflatoxin B1could promote cell growth and invasion in hepatocellular carcinoma HepG2 cells through actions on H19 and E2F1.

Sequencing and Baculovirus-Based Expression of the Glycoprotein B2 Gene of HSV-2 (G)

  • Uh, Hong-Sun;Park, Jong-Kuk;Kang, Hyun;Kim, Soo-Young;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.482-490
    • /
    • 2001
  • The gene for glycoprotein B (gB2) of HSV-2-strain G was subcloned, sequenced, recombinated into the lacZ-HcNPV, expressed in insect cells, and compared with the homologous gene of other HSV-2 strains. The ORF of the gB2 gene was 2,715 bp. The overall nucleotide sequence homology of te gB2 gene compared ith that of the two previously reported HSV-2 strains appeared to be over 98%. A recombinant virus named Baculo-gB2 protein in insect cells. The recombination was confirmed by a PCR and the expression was demonstrated by radio immunoprecipitation. Insect cells infected with the Baculo-gB2 virus synthesized and processed gB2 with approximately 120 kDa in the cells, and then secreted it into the culture media, where it reacted with a nomoclonal antibody to gB2. The gB2 polypeptide contained two main hydrophobic regions (a signal sequence from 1 to 23 amino acid residues, and a membrane anchor sequence from aa 745 to 798), eight N-glycosylation sites evenly distributed, and was rich in alanine (11.2%). Antibodies to this recombinant protein that were raised in mice recognized the viral gB2 and neutralized the infectivity of the HSV-2 in vitro. There results show that the gB2 protein was successfully porduced in insect cells and could be used to raise a protective neutralizing antibody. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

E1B-19k does not Localize in Mitochondria nor Dimerize Bax even with the Staurosporine (E1B-19k의 세포내 위치와 Bax와의 Dimerization에 관한 연구)

  • Yoon, Soo Han;Kim, Jin Young;Park, Seung Woo;Ahn, Young Hwan;Ahn, Young Min;Cho, Ki Hong;Cho, Kyung Gi
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.725-730
    • /
    • 2000
  • Purpose : The subcellular localization of E1B-19k has been known cytosol or nuclear membrane by immunohistochemical staining and could dimerize with Bax to regulate cell death also known by the in-vitro immunoprecipitation. We planed to confirm this dimerization of E1B-19k with Bax in vivo in Cos-7 cells by using green fluorescent protein. Material and Method : We cloned E1B-19k and Bax into C3-EGFP. C3-EGFP-E1B-19k, C3-EGFP-Bax, and C3-EGFP-E1B-19k and pcDNA3-Bax were transfected into Cos-7 cells. We explored location of E1B-19k and Bax, and confirmed its dimerization with Bax in transfected living healthy Cos-7 cells by following green fluorescent protein of E1B-19k on the confocal microscope. Results : E1B-19k was located diffusely in cytoplasm and in nucleus but not in mitochondria. It prevented cell death from the apoptosis by staurosporine but its location was not changed. GFP-E1B-19k is not changed its intracellular location with Bax even with staurosporine. Conclusion : These results support that E1B-19k does not localize in mitochondria nor dimerize with Bax even with staurosporine. We could anticipate E1B-19k prevent cell death via the other dimerizing partner or pathways.

  • PDF

Interaction of Stomatin with Hepatitis C Virus RNA Polymerase Stabilizes the Viral RNA Replicase Complexes on Detergent-Resistant Membranes

  • Kim, Jung-Hee;Rhee, Jin-Kyu;Ahn, Dae-Gyun;Kim, Kwang Pyo;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1744-1754
    • /
    • 2014
  • The hepatitis C virus (HCV) RNA genome is replicated by an RNA replicase complex (RC) consisting of cellular proteins and viral nonstructural (NS) proteins, including NS5B, an RNA-dependent RNA polymerase (RdRp) and key enzyme for viral RNA genome replication. The HCV RC is known to be associated with an intracellular membrane structure, but the cellular components of the RC and their roles in the formation of the HCV RC have not been well characterized. In this study, we took a proteomic approach to identify stomatin, a member of the integral proteins of lipid rafts, as a cellular protein interacting with HCV NS5B. Co-immunoprecipitation and co-localization studies confirmed the interaction between stomatin and NS5B. We demonstrated that the subcellular fraction containing viral NS proteins and stomatin displays RdRp activity. Membrane flotation assays with the HCV genome replication-competent subcellular fraction revealed that the HCV RdRp and stomatin are associated with the lipid raft-like domain of membranous structures. Stomatin silencing by RNA interference led to the release of NS5B from the detergent-resistant membrane, thereby inhibiting HCV replication in both HCV subgenomic replicon-harboring cells and HCV-infected cells. Our results identify stomatin as a cellular protein that plays a role in the formation of an enzymatically active HCV RC on a detergent-resistant membrane structure.

Tax is Involved in Up-regulation of HMGB1 Expression Levels by Interaction with C/EBP

  • Zhang, Chen-Guang;Wang, Hui;Niu, Zhi-Guo;Zhang, Jing-Jing;Yin, Ming-Mei;Gao, Zhi-Tao;Hu, Li-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.359-365
    • /
    • 2013
  • The high mobility group box 1 (HMGB1) protein is a multifunctional cytokine-like molecule that plays an important role in the pathogenesis of tumors. In this study, real-time polymerase chain reactions and Western blot assays indicated that HMGB1 transcriptional activity and protein level are increased in $Tax^+$-T cells (TaxP). To clarify the mechanisms, a series of HMGB1 deletion reporter plasmids (pHLuc1 to pHLuc6) were transfected into $Tax^-$-T cells (TaxN, Jurkat) and $Tax^+$-T cells (TaxP). We found that promoter activity in $Tax^+$-T cells to be higher than that in $Tax^-$-T cells, indicating a significant increase in pHLuc6. Bay11-7082 (NF-${\kappa}B$ inhibitor) treatment did not block the enhancing effect. Chromatin immunoprecipitation assays revealed that Tax was retained on a HMGB1 promoter fragment encompassing -1163 to -975. Bioinformatics analysis showed six characteristic cis-elements for CdxA, AP-1, AML-1a, USF, v-Myb, and C/EBP in the fragment in question. Mutation of cis-elements for C/EBP reduced significant HMGB1 promoter activity induced by Tax. These findings indicate that Tax enhances the expression of HMGB1 gene at the transcriptional level, possibly by interacting with C/EBP.

NFATc1 and NFATc3 is Involved in the Expression of Receptor Activator of NF-${\kappa}B$ Ligand in Activated T Lymphocytes

  • Heo, Sun-Jae;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) is an essential cytokine for osteoclast differentiation, activation and survival. T lymphocytes such as $T_{17}$ cells, a subset of T helper cells that produce IL-17, play an important role in rheumatoid arthritic bone resorption by producing inflammatory cytokines and RANKL. It has not yet been clearly elucidated how T cell activation induces RANKL expression. T cell receptor activation induces the activation of nuclear factor of activated T cell (NFAT) and expression of its target genes. In this study, we examined the role of NFAT in T cell activation-induced RANKL expression. EL-4, a murine T lymphocytic cell line, was used. When T cell activation was induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin, RANKL expression increased in a time-dependent manner. In the presence of cyclosporin, an inhibitor of NFAT activation, this PMA/ionomycin-induced RANKL expression was blocked. Overexpression of either NFATc1 or NFATc3 induced RANKL expression. Chromatin immunoprecipitation results demonstrated that PMA/ionomycin treatment induced the binding of NFATc1 and NFATc3 to the mouse RANKL gene promoter. These results suggest that NFATc1 and NFATc3 mediates T cell receptor activation-induced RANKL expression in T lymphocytes.

Eupatilin Inhibits Gastric Cancer Cell Growth by Blocking STAT3-Mediated VEGF Expression

  • Cheong, Jae-Ho;Hong, Sung-Yi;Zheng, Yanjun;Noh, Sung-Hoon
    • Journal of Gastric Cancer
    • /
    • v.11 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • Purpose: Eupatilin is an antioxidative flavone and a phytopharmaceutical derived from Artemisia asiatica. It has been reported to possess anti-tumor activity in some types of cancer including gastric cancer. Eupatilin may modulate the angiogenesis pathway which is part of anti-inflammatory effect demonstrated in gastric mucosal injury models. Here we investigated the anti-tumor effects of eupatilin on gastric cancer cells and elucidated the potential underlying mechanism whereby eupatilin suppresses angiogenesis and tumor growth. Materials and Methods: The impact of eupatilin on the expression of angiogenesis pathway proteins was assessed using western blots in MKN45 cells. Using a chromatin immunoprecipitation assay, we tested whether eupatilin affects the recruitment of signal transducer and activator of transcription 3 (STAT3), aryl hydrocarbon receptor nuclear translocator (ARNT) and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) to the human VEGF promoter. To investigate the effect of eupatilin on vasculogenesis, tube formation assays were conducted using human umbilical vein endothelial cells (HUVECs). The effect of eupatilin on tumor suppression in mouse xenografts was assessed. Results: Eupatilin significantly reduced VEGF, ARNT and STAT3 expression prominently under hypoxic conditions. The recruitment of STAT3, ARNT and HIF-$1{\alpha}$ to the VEGF promoter was inhibited by eupatilin treatment. HUVECs produced much foreshortened and severely broken tubes with eupatilin treatment. In addition, eupatilin effectively reduced tumor growth in a mouse xenograft model. Conclusions: Our results indicate that eupatilin inhibits angiogenesis in gastric cancer cells by blocking STAT3 and VEGF expression, suggesting its therapeutic potential in the treatment of gastric cancer.

Direct Interaction Between Akt1 and Gcn5 and its Plausible Function on Hox Gene Expression in Mouse Embryonic Fibroblast Cells

  • Oh, Ji Hoon;Lee, Youra;Kong, Kyoung-Ah;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.266-269
    • /
    • 2013
  • Hox genes encode transcription factors important for anterior-posterior body patterning at early stages of embryonic development. However, the precise mechanisms by which signal pathways are stimulated to regulate Hox gene expression are not clear. In the previous study, protein kinase B alpha (Akt1) has been identified as a putative upstream regulator of Hox genes, and Akt1 has shown to regulate Gcn5, a prototypical histone acetyltransferase (HAT), in a negative way in mouse embryonic fibroblast (MEF) cells. Since the activity of HAT such as the CBP/p300, and PCAF (a Gcn5 homolog), was down-regulated by Akt through a phosphorylation at the Akt consensus substrate motif (RXRXXS/T), the amino acid sequence of Gcn5 protein was analyzed. Mouse Gcn5 contains an Akt consensus substrate motif as RQRSQS sequence while human Gcn5 does not have it. In order to see whether Akt1 directly binds to Gcn5, immunoprecipitation with anti-Akt1 antibody was carried out in wild-type (WT) mouse embryonic fibroblast (MEF) cells, and then western blot analysis was performed with anti-Akt1 and anti-Gcn5 antibodies. Gcn5 protein was detected in the Akt1 immunoprecipitated samples of MEFs. This result demonstrates that Akt1 directly binds to Gcn5, which might have contributed the down regulation of the 5' Hoxc gene expressions in wild type MEF cells.