• Title/Summary/Keyword: immune-related genes

Search Result 238, Processing Time 0.024 seconds

Association of KIR (Killer Cell Immunoglobulin-like Receptor) Genotype with Psoriasis in Korean Population (한국인에서 건선과 KIR (Killer Cell Immunoglobulin-like Receptor) 유전자형 사이의 연관성)

  • Choi, Eun-Jung;Choi, Hee-Baeg;Kim, Su-Yeon;Yoon, Ho-Yeul;Park, Min-Ji;Kim, Tae-Yoon;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • Background: Psoriasis is a multifactorial autoimmune skin disease with a pathogenesis that has remained obscure. Recently, T cells bearing natural killer receptors (NKRs) were precisely and strongly targeted as new putative pathogenic immunocytes in psoriasis. Among NKRs, killer cell immunoglobulin-like receptor (KIR) is the major molecule recognizing HLA class I allotypes and might be closely related to psoriasis. Methods: To investigate the association of KIR genotype and patients with psoriasis in Korean, we defined the 14 KIR genotypes in 96 patients with psoriasis and 86 healthy controls using PCR-SSP methods. Results: The frequencies of KIR2DS4 and KIR3DL1 were significantly decreased in psoriasis compared with controls (RR=0.21, p<0.02). When patients were divided into two subgroups at the age of onset, type I (<30 years) and type II ($({\geq}30$ years) respectively, these phenomena were similarly observed independent of groups divided (type I: RR=0.26, p<0.005; type II: RR=0.14, p<0.0006). When the patients were divided into subgroups according to the age of onset and family history, the frequencies of KIR2DS4, KIR3DL1, and KIR2DS3 were significantly decreased in type I compared with type II psoriasis (3DL1, 2DS4: p<0.004; 2DS3: p<0.04) and were significantly decreased in psoriasis without family history compared to with family history (3DL1, 2DS4: p<0.007; 2DS3: p<0.05). The frequency of haplotype combination BB was significantly increased in psoriasis compared with controls (RR=2.74, p<0.009). Conclusion: These results suggest that KIR genotype is a factor for the occurrence and development of psoriasis and in future how combinations of HLA and KIR genes influence psoriasis needs to be defined.

Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Ban, Jihye;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1037-1047
    • /
    • 2017
  • Objective: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. Methods: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. Results: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, ggamiR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, ggamiR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. Conclusion: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.

Bioactive Molecules Produced by Probiotics to Control Enteric Pathogens (프로바이오틱스가 생산하는 생리활성 물질의 장내 유해균 억제 효과)

  • Lim, Kwang-Sei;Griffiths, Mansel W.;Park, Dong June;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • There is a burgeoning number of products on the market that contain probiotics, but do they do you any good? What exactly are probiotics? They have been defined as living organisms that, when ingested in sufficient quantities, provide health benefits beyond basic nutrition. They are often referred to as "friendly bacteria" or "good bacteria." Probiotics have been claimed, amongst other things, to (i) reduce the incidence of colon cancer and other diseases of the colon, such as IBS, (ii) stimulate the immune system, (iii) have anti-hypertensive and anti-cholesterolemic properties, (iv) mitigate against the effect of antibiotics on the intestinal microbiota, and (v) protect against gastrointestinal infections. However, the scientific basis for many of these claims is not well-established. Indeed, the European Food Safety Authority has denied the use of several health claims associated with probiotics, particularly those related to mitigation of diarrhea following consumption of antibiotics. Thus, there is a need for research on the mechanisms of action of probiotics. We have been mainly interested in the use of probiotics to control enteric infections. There are several possible modes of action to explain how probiotics may protect the host from enteric pathogens, including competitive exclusion and immunomodulation. We have shown that probiotics produce bioactive molecules that interfere with bacterial cell-cell communication (also called quorum sensing), and this results in a down-regulation of virulence genes that are responsible for attachment of the pathogen to the gastrointestinal epithelium. These bioactive molecules act on a variety of bacteria, including enterohemorrhagic and enterotoxigenic Escherichia coli, Salmonella, Clostridium difficile and Clostridium perfringens, and there is evidence that they can inhibit the formation of biofilms by Listeria monocytogenes. These bioactive molecules, which are peptidic in nature, can exert their effects not only in vitro but also in vivo, and we have shown that they mitigate against E. coli O157:H7 and Salmonella in mice and Salmonella and E. coli K88 infections in pigs. They can be delivered in foods such as yoghurt and maintain their activity.

  • PDF

Role of IFNLR1 gene in PRRSV infection of PAM cells

  • Qin, Ming;Chen, Wei;Li, Zhixin;Wang, Lixue;Ma, Lixia;Geng, Jinhong;Zhang, Yu;Zhao, Jing;Zeng, Yongqing
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.39.18-39.18
    • /
    • 2021
  • Background: Interferon lambda receptor 1 (IFNLR1) is a type II cytokine receptor that clings to interleukins IL-28A, IL29B, and IL-29 referred to as type III IFNs (IFN-λs). IFN-λs act through the JAK-STAT signaling pathway to exert antiviral effects related to preventing and curing an infection. Although the immune function of IFN-λs in virus invasion has been described, the molecular mechanism of IFNLR1 in that process is unclear. Objectives: The purpose of this study was to elucidate the role of IFNLR1 in the pathogenesis and treatment of porcine reproductive and respiratory syndrome virus (PRRSV). Methods: The effects of IFNLR1 on the proliferation of porcine alveolar macrophages (PAMs) during PRRSV infection were investigated using interference and overexpression methods. Results: In this study, the expressions of the IFNLR1 gene in the liver, large intestine, small intestine, kidney, and lung tissues of Dapulian pigs were significantly higher than those in Landrace pigs. It was determined that porcine IFNLR1 overexpression suppresses PRRSV replication. The qRT-PCR results revealed that overexpression of IFNLR1 upregulated antiviral and IFN-stimulated genes. IFNLR1 overexpression inhibits the proliferation of PAMs and upregulation of p-STAT1. By contrast, knockdown of IFNLR1 expression promotes PAMs proliferation. The G0/G1 phase proportion in IFNLR1-overexpressing cells increased, and the opposite change was observed in IFNLR1-underexpressing cells. After inhibition of the JAK/STAT signaling pathway, the G2/M phase proportion in the IFNLR1-overexpressing cells showed a significant increasing trend. In conclusion, overexpression of IFNLR1 induces activation of the JAK/STAT pathway, thereby inhibiting the proliferation of PAMs infected with PRRSV. Conclusion: Expression of the IFNLR1 gene has an important regulatory role in PRRSV-infected PAMs, indicating it has potential as a molecular target in developing a new strategy for the treatment of PRRSV.

Correlation of Protumor Effects of Leucine-Rich Repeat Kinase 2 with Interleukin-10 Expression in Lung Squamous Cell Carcinoma (폐 편평세포암종 내 Leucine-Rich Repeat Kinase 2 암촉진 효과와 Interleukin-10 발현과의 연관성)

  • Sung Won LEE;Sangwook PARK
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.2
    • /
    • pp.105-112
    • /
    • 2023
  • Leucine-rich repeat kinase 2 (LRRK2) is known to play a crucial role in the pathophysiology of neurodegenerative disorders such as Parkinson's disease. LRRK2 is predominantly expressed in the lung as well as the brain. However, it is unclear whether LRRK2 expression correlates with the pathogenesis of lung squamous cell carcinoma (LUSC). This study analyzes the prognostic significance of LRRK2 in LUSC using the Kaplan-Meier plotter tool. High expression of LRRK2 is known to be associated with a bad prognosis in patients with LUSC. Patients with high LRRK2 expression, tumor mutational burden, high neoantigen load, and even gender correlation reportedly have the worse survival rates. In the gene expression profiling interactive analysis (GEPIA) database, the severity of pathogenesis in LUSC with high LRRK2 expression positively corresponds to a high expression of anti-inflammatory cytokines but not inflammatory cytokines. Similarly, the increased expression of interleukin (IL)10-related genes was shown to be significantly linked in LRRK2-high LUSC patients having a poor prognosis. Moreover, the tumor immune estimation resource (TIMER) database suggests that macrophages are one of the cellular sources of IL10 in LRRK2-high LUSC patients. Collectively, our results demonstrate that the postulated LRRK2-IL10 axis is a potential therapeutic target and prognostic biomarker for LUSC.

Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses

  • Ferdaus Mohd Altaf Hossain;Seong Ok Park;Hyo Jin Kim;Jun Cheol Eo;Jin Young Choi;Maryum Tanveer;Erdenebelig Uyangaa;Koanhoi Kim;Seong Kug Eo
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.26.1-26.28
    • /
    • 2021
  • Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.

Conditioned Media of RAW 264.7 Cells Stimulated with Phellinus linteus Extract Regulates the Epithelial-mesenchymal Transition in Prostate Cancer Cells (상황버섯에 의해 활성화된 RAW 264.7 대식세포주 배양액의 인간 전립선암 세포주의 epithelial-mesenchymal transition 조절)

  • Kang, Taewoo;An, Hyun-Hee;Park, Sul-Gi;Yu, Sun-Nyoung;Hwang, You-Lim;Kim, Ji-Won;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.904-915
    • /
    • 2019
  • Prostate cancer (PCa) is one of the most metastatic tumor. Although hormone therapy or surgical castration is mostly conducted to treat PCa, it has a lot of side effects. Recently, many researchers have been exploring the tumor microenvironment to remedy these circumstances. Immune cells, especially macrophages, are an important composition of the tumor microenvironment. Under normal conditions, macrophages exhibit mild tumoricidal activity against tumors. However, once activated by interferon gamma or lipopolysaccharides, macrophages can kill cancer cells directly or indirectly by secreting cytokines and chemokines. In this study, murine macrophage RAW 264.7 cells were treated with Phellinus linteus extract. To analyze their pro-inflammatory phenotype, we were used several assays such as a real-time polymerase chain reaction, an enzyme-linked immunosorbent and nitric oxide assay. Prostate cancer cells were treated with the RAW 264.7-conditioned media, which was identified as a pro-inflammatory nature, for 48 h, and the expression of epithelial-mesenchymal transition (EMT)-related genes was determined. Not only N-cadherin, Snail, Twist, Slug, and Cadherin 11, which are mechenchymal-related proteins, were decrease, but epithelial marker of E-cadherin was increased. In addition, the mRNA level of vimentin, ccl2, and vegfa were decreased, as the EMT is closely related to the migration and invasion of cancer cells. In conclusion, the RAW 264.7-conditioned media stimulated with P. linteus extract inhibited migration and invasion and regulated the EMT pathway in human prostate cancer cells.

Activation of NF-${\kappa}B$ in Lung Cancer Cell Lines in Basal and TNF-${\alpha}$ Stimulated States (폐암 세포에서 기저 상태와 TNF-${\alpha}$ 자극 시 NF-${\kappa}B$의 활성화)

  • HwangBo, Bin;Lee, Seung-Hee;Lee, Choon-Taek;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : The NF-${\kappa}B$ transcription factors control various biological processes including the immune response, acute phase reaction and cell cycle regulation. NF-${\kappa}B$ complexes are retained in the cytoplasm in the basal state and various stimuli cause a translocation of the NF-${\kappa}B$ complexes into the nucleus where they bind to the ${\kappa}B$ elements and regulate the transcription of the target genes. Recent reports also suggest that NF-${\kappa}B$ proteins are involved in oncogenesis, tumor growth and metastasis. High expression of NF-${\kappa}B$ expression was reported in many cancer cell lines and tissues. The constitutive activation of NF-${\kappa}B$ was also reported in several cancer cell lines supporting its role in cancer development and survival. The anti-apoptotic action of NF-${\kappa}B$ is important for cancer survival. NF-${\kappa}B$ also controls the expression of several proteins that are important for cellular adhesion (ICAM-1, VCAM-1) suggesting a role in cancer metastasis. In lung cancer, high expression levels of the NF-${\kappa}B$ subunit p50 and c-Rel were reported. In fact, high expression does not mean a high activity, and the activation pattern of NF-${\kappa}B$ in lung cancer has not been reported. Materials and Methods : In this study, the NF-${\kappa}B$ nuclear binding activity in the basal and TNF-${\alpha}$ stimulated states were exmined in various lung cancer cell lines and compared with the normal bronchial epithelial cell line. Twelve lung cancer cell lines including the non-small cell and small cell lung cancer cell lines (A549, NCI-H358, NCI-H441, NCI-H552, NCI-H2009, NCI-H460, NCI-H1229, NCI-H1703, NCI-H157, NCI-H187, NCI-H417, NCI-H526) and BEAS-2B bronchial epithelial cell line were used. To evaluate the NF-${\kappa}B$ expression and DNA binding activity, western blot analysis and an electrophoretic mobility shift assay with the nuclear protein extracts. Results : The basal expressions of the p65 and p50 subunits were observed in the BEAS-2B cell line and all lung cancer cell lines except for NCI-H358 and NCI-H460. The expression levels of p65 and p50 were increased 30 minutes after stimulation with TNF-${\alpha}$ in BEAS-2B and in 10 lung cancer cell lines. In the NCI-H358 and NCI-H460 cell lines, p65 expression was not observed in the basal and stimulated states and the two p50 related protein levels were higher after stimulation with TNF-${\alpha}$ These new proteins were smaller than p50 and are thought to be variants of p50. In the basal state, NF-${\kappa}B$ was nearly activated in the BEAS-2B and all lung cancer cell lines. The DNA binding activity of the NF-${\kappa}B$ complexes was markedly higher after stimulation with TNF-${\alpha}$ In the BEAS-2B and all lung cancer cell line except for NCI-H358 and NCI-H460, the activated NF-${\kappa}B$ complex was a p65/p50 heterodimer. In the NCI-H358 and NCI-H460 lung cancer cell lines, the NF-${\kappa}B$ complex was variant of a p50/p50 homodimer. Conclusion : The NF-${\kappa}B$ activation pattern in the lung cancer cell lines and the normal bronchial epithelial cell lines was similar except for the activation of a variant of the p50/p50 homodimer in some lung cancer cell linse.