DOI QR코드

DOI QR Code

Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses

  • Ferdaus Mohd Altaf Hossain (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Seong Ok Park (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Hyo Jin Kim (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Jun Cheol Eo (Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University) ;
  • Jin Young Choi (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Maryum Tanveer (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Erdenebelig Uyangaa (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Koanhoi Kim (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Seong Kug Eo (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University)
  • Received : 2021.06.25
  • Accepted : 2021.08.05
  • Published : 2021.08.31

Abstract

Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through National Research Foundation of Korea (NRF) grants funded by the Ministry of Education and the Ministry of Science and ICT (MSIT), Republic of Korea (2021R1A2B5B02001578, 2019R1A6A1A03033084, http://www.nrf.re.kr for Seong Kug Eo and 2020R1A6A3A13069626, http://www.nrf.re.kr for Seong Ok Park). The funder had no role in the study design, data collection, data analysis, decision to publish, or preparation of the manuscript. We thank Dr. Yoon-Young Choi, Center for University Research Facility (CURF) at Chonbuk National University for providing technical assistance for the FACS analysis.

References

  1. Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol 2020;42:5-15. https://doi.org/10.1007/s00281-020-00785-1
  2. Kim YM, Kim YS, Jeon SG, Kim YK. Immunopathogenesis of allergic asthma: more than the th2 hypothesis. Allergy Asthma Immunol Res 2013;5:189-196. https://doi.org/10.4168/aair.2013.5.4.189
  3. Hossain FMA, Choi JY, Uyangaa E, Park SO, Eo SK. The interplay between host immunity and respiratory viral infection in asthma exacerbation. Immune Netw 2019;19:e31.
  4. Jartti T, Bonnelykke K, Elenius V, Feleszko W. Role of viruses in asthma. Semin Immunopathol 2020;42:61-74. https://doi.org/10.1007/s00281-020-00781-5
  5. Castillo JR, Peters SP, Busse WW. Asthma exacerbations: pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 2017;5:918-927. https://doi.org/10.1016/j.jaip.2017.05.001
  6. Steinke JW, Borish L. Immune responses in rhinovirus-induced asthma exacerbations. Curr Allergy Asthma Rep 2016;16:78.
  7. Papadopoulos NG, Stanciu LA, Papi A, Holgate ST, Johnston SL. Rhinovirus-induced alterations on peripheral blood mononuclear cell phenotype and costimulatory molecule expression in normal and atopic asthmatic subjects. Clin Exp Allergy 2002;32:537-542. https://doi.org/10.1046/j.0954-7894.2002.01313.x
  8. Gehlhar K, Bilitewski C, Reinitz-Rademacher K, Rohde G, Bufe A. Impaired virus-induced interferon-alpha2 release in adult asthmatic patients. Clin Exp Allergy 2006;36:331-337. https://doi.org/10.1111/j.1365-2222.2006.02450.x
  9. Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ Jr, Calatroni A, Wildfire JJ, Gergen PJ, Cohen RT, Pongracic JA, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 2015;136:1476-1485. https://doi.org/10.1016/j.jaci.2015.09.008
  10. Gill MA, Bajwa G, George TA, Dong CC, Dougherty II, Jiang N, Gan VN, Gruchalla RS. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol 2010;184:5999-6006. https://doi.org/10.4049/jimmunol.0901194
  11. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, Holgate ST, Davies DE. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201:937-947. https://doi.org/10.1084/jem.20041901
  12. Baraldo S, Contoli M, Bazzan E, Turato G, Padovani A, Marku B, Calabrese F, Caramori G, Ballarin A, Snijders D, et al. Deficient antiviral immune responses in childhood: distinct roles of atopy and asthma. J Allergy Clin Immunol 2012;130:1307-1314. https://doi.org/10.1016/j.jaci.2012.08.005
  13. Turner RB, Weingand KW, Yeh CH, Leedy DW. Association between interleukin-8 concentration in nasal secretions and severity of symptoms of experimental rhinovirus colds. Clin Infect Dis 1998;26:840-846. https://doi.org/10.1086/513922
  14. Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, Juhlin KD, Fulmer AW, Ho BY, Walanski AA, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008;178:962-968. https://doi.org/10.1164/rccm.200805-670OC
  15. Muehling LM, Heymann PW, Wright PW, Eccles JD, Agrawal R, Carper HT, Murphy DD, Workman LJ, Word CR, Ratcliffe SJ, et al. Human TH1 and TH2 cells targeting rhinovirus and allergen coordinately promote allergic asthma. J Allergy Clin Immunol 2020;146:555-570. https://doi.org/10.1016/j.jaci.2020.03.037
  16. Hekking PW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol 2015;135:896-902. https://doi.org/10.1016/j.jaci.2014.08.042
  17. Han M, Ishikawa T, Bermick JR, Rajput C, Lei J, Goldsmith AM, Jarman CR, Lee J, Bentley JK, Hershenson MB. IL-1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early-life rhinovirus infection in mice. Allergy 2020;75:2005-2019. https://doi.org/10.1111/all.14241
  18. Southworth T, Pattwell C, Khan N, Mowbray SF, Strieter RM, Erpenbeck VJ, Singh D. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine 2020;125:154857.
  19. Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, Lemanske RF Jr, Ober C, Palmenberg AC, Gern JE. CDHR3 asthma-risk genotype affects susceptibility of airway epithelium to rhinovirus C infections. Am J Respir Cell Mol Biol 2019;61:450-458. https://doi.org/10.1165/rcmb.2018-0220OC
  20. Shigemasa R, Masuko H, Hyodo K, Kitazawa H, Kanazawa J, Yatagai Y, Iijima H, Naito T, Saito T, Hirota T, et al. Genetic impact of CDHR3 on the adult onset of asthma and COPD. Clin Exp Allergy 2020;50:1223-1229. https://doi.org/10.1111/cea.13699
  21. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013;34:137-143.
  22. Yeung AW, Terentis AC, King NJ, Thomas SR. Role of indoleamine 2,3-dioxygenase in health and disease. Clin Sci (Lond) 2015;129:601-672. https://doi.org/10.1042/CS20140392
  23. Mellor AL, Lemos H, Huang L. Indoleamine 2,3-dioxygenase and tolerance: Where are we now? Front Immunol 2017;8:1360.
  24. Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan metabolism in allergic disorders. Int Arch Allergy Immunol 2016;169:203-215. https://doi.org/10.1159/000445500
  25. Van der Leek AP, Yanishevsky Y, Kozyrskyj AL. The kynurenine pathway as a novel link between allergy and the gut microbiome. Front Immunol 2017;8:1374.
  26. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P. T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002;9:1069-1077. https://doi.org/10.1038/sj.cdd.4401073
  27. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, Servillo G, Brunacci C, Calvitti M, Bicciato S, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011;12:870-878. https://doi.org/10.1038/ni.2077
  28. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003;4:1206-1212. https://doi.org/10.1038/ni1003
  29. Xu H, Zhang GX, Ciric B, Rostami A. IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett 2008;121:1-6. https://doi.org/10.1016/j.imlet.2008.08.008
  30. Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, Ghahary A, Moqbel R. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J Immunol 2004;173:5909-5913. https://doi.org/10.4049/jimmunol.173.10.5909
  31. Xu H, Oriss TB, Fei M, Henry AC, Melgert BN, Chen L, Mellor AL, Munn DH, Irvin CG, Ray P, et al. Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci U S A 2008;105:6690-6695. https://doi.org/10.1073/pnas.0708809105
  32. Hayashi T, Beck L, Rossetto C, Gong X, Takikawa O, Takabayashi K, Broide DH, Carson DA, Raz E. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004;114:270-279. https://doi.org/10.1172/JCI21275
  33. Luukkainen A, Karjalainen J, Hurme M, Paavonen T, Huhtala H, Toppila-Salmi S. Relationships of indoleamine 2,3-dioxygenase activity and cofactors with asthma and nasal polyps. Am J Rhinol Allergy 2014;28:e5-e10. https://doi.org/10.2500/ajra.2014.28.4013
  34. Maneechotesuwan K, Ekjiratrakul W, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Statins enhance the anti-inflammatory effects of inhaled corticosteroids in asthmatic patients through increased induction of indoleamine 2, 3-dioxygenase. J Allergy Clin Immunol 2010;126:754-762.e1. https://doi.org/10.1016/j.jaci.2010.08.005
  35. Hu Y, Chen Z, Zeng J, Zheng S, Sun L, Zhu L, Liao W. Th17/Treg imbalance is associated with reduced indoleamine 2,3 dioxygenase activity in childhood allergic asthma. Allergy Asthma Clin Immunol 2020;16:61.
  36. Jin L, Hu Q, Hu Y, Chen Z, Liao W. Respiratory syncytial virus infection reduces kynurenic acid production and reverses Th17/Treg balance by modulating indoleamine 2,3-dioxygenase (IDO) molecules in plasmacytoid dendritic cells. Med Sci Monit 2020;26:e926763.
  37. Gaelings L, Soderholm S, Bugai A, Fu Y, Nandania J, Schepens B, Lorey MB, Tynell J, Vande Ginste L, Le Goffic R, et al. Regulation of kynurenine biosynthesis during influenza virus infection. FEBS J 2017;284:222-236. https://doi.org/10.1111/febs.13966
  38. van der Sluijs KF, van de Pol MA, Kulik W, Dijkhuis A, Smids BS, van Eijk HW, Karlas JA, Molenkamp R, Wolthers KC, Johnston SL, et al. Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design. Thorax 2013;68:1122-1130. https://doi.org/10.1136/thoraxjnl-2013-203728
  39. Hossain FMA, Park SO, Kim HJ, Eo JC, Choi JY, Uyangaa E, Kim B, Kim K, Eo SK. CCR5 attenuates neutrophilic airway inflammation exacerbated by infection with rhinovirus. Cell Immunol 2020;351:104066.
  40. Lee M, Kim S, Kwon OK, Oh SR, Lee HK, Ahn K. Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. Int Immunopharmacol 2009;9:418-424. https://doi.org/10.1016/j.intimp.2009.01.005
  41. Reber LL, Daubeuf F, Nemska S, Frossard N. The AGC kinase inhibitor H89 attenuates airway inflammation in mouse models of asthma. PLoS One 2012;7:e49512.
  42. Ni ZH, Tang JH, Chen G, Lai YM, Chen QG, Li Z, Yang W, Luo XM, Wang XB. Resveratrol inhibits mucus overproduction and MUC5AC expression in a murine model of asthma. Mol Med Rep 2016;13:287-294. https://doi.org/10.3892/mmr.2015.4520
  43. Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, Sabirin RM, Hirose S, Nakamura N. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res 2019;20:11.
  44. Peake K, Manning J, Lewis CA, Barr C, Rossi F, Krieger C. Busulfan as a myelosuppressive agent for generating stable high-level bone marrow chimerism in mice. J Vis Exp 2015:e52553.
  45. Calkins CM, Barsness K, Bensard DD, Vasquez-Torres A, Raeburn CD, Meng X, McIntyre RC Jr. Toll-like receptor-4 signaling mediates pulmonary neutrophil sequestration in response to gram-positive bacterial enterotoxin. J Surg Res 2002;104:124-130. https://doi.org/10.1006/jsre.2002.6422
  46. Looi K, Buckley AG, Rigby PJ, Garratt LW, Iosifidis T, Zosky GR, Larcombe AN, Lannigan FJ, Ling KM, Martinovich KM, et al. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma. Clin Exp Allergy 2018;48:513-524. https://doi.org/10.1111/cea.13097
  47. Tan HT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, Eljaszewicz A, Moniuszko M, Akdis M, Akdis CA, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy 2019;74:294-307. https://doi.org/10.1111/all.13619
  48. Yeo NK, Jang YJ. Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope 2010;120:346-352. https://doi.org/10.1002/lary.20764
  49. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM, et al. Muc5b is required for airway defence. Nature 2014;505:412-416. https://doi.org/10.1038/nature12807
  50. Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. J Allergy Clin Immunol 2021;147:2060-2062. https://doi.org/10.1016/j.jaci.2021.04.022
  51. Misra RS. A review of the CD4+ T cell contribution to lung infection, inflammation and repair with a focus on wheeze and asthma in the pediatric population. EC Microbiol 2014;1:4-14. PUBMED
  52. Platts-Mills TA. The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med 2001;164:S1-S5. https://doi.org/10.1164/ajrccm.164.supplement_1.2103024
  53. Alrifai M, Marsh LM, Dicke T, Kilic A, Conrad ML, Renz H, Garn H. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One 2014;9:e85839.
  54. Pan J, Yang Q, Zhou Y, Deng H, Zhu Y, Zhao D, Liu F. MicroRNA-221 modulates airway remodeling via the PI3K/AKT pathway in ova-induced chronic murine asthma. Front Cell Dev Biol 2020;8:495.
  55. Wu H, Gong J, Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol Med Rep 2018;17:4867-4873. https://doi.org/10.3892/mmr.2018.8537
  56. Nicoli F, Paul S, Appay V. Harnessing the induction of CD8+ T-cell responses through metabolic regulation by pathogen-recognition-receptor triggering in antigen presenting cells. Front Immunol 2018;9:2372.
  57. Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small animal models of respiratory viral infection related to asthma. Viruses 2018;10:682.
  58. Sokulsky LA, Garcia-Netto K, Nguyen TH, Girkin JLN, Collison A, Mattes J, Kaiko G, Liu C, Bartlett NW, Yang M, et al. A critical role for the CXCL3/CXCL5/CXCR2 neutrophilic chemotactic axis in the regulation of type 2 responses in a model of rhinoviral-induced asthma exacerbation. J Immunol 2020;205:2468-2478. https://doi.org/10.4049/jimmunol.1901350
  59. von Bubnoff D, Bieber T. The indoleamine 2,3-dioxygenase (IDO) pathway controls allergy. Allergy 2012;67:718-725.
  60. Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH, et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A 2007;104:18619-18624. https://doi.org/10.1073/pnas.0709261104
  61. Taher YA, Piavaux BJ, Gras R, van Esch BC, Hofman GA, Bloksma N, Henricks PA, van Oosterhout AJ. Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model. J Allergy Clin Immunol 2008;121:983-991.e2. https://doi.org/10.1016/j.jaci.2007.11.021
  62. Kim KW, Kim HR, Kim BM, Won JY, Lee KA, Lee SH. Intravenous immunoglobulin controls Th17 cell-mediated osteoclastogenesis. Immune Netw 2019;19:e27.
  63. Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 2010;185:5953-5961. https://doi.org/10.4049/jimmunol.1001628
  64. Moon J, Lee SH, Lee SY, Ryu J, Jhun J, Choi J, Kim GN, Roh S, Park SH, Cho ML. GRIM-19 ameliorates multiple sclerosis in a mouse model of experimental autoimmune encephalomyelitis with reciprocal regualtion of IFNγ/Th1 and IL-17A/Th17 cells. Immune Netw 2020;20:e40.
  65. Van der Sluijs K, Singh R, Dijkhuis A, Snoek M, Lutter R. Indoleamine-2,3-dioxygenase activity induces neutrophil apoptpsis. Crit Care 2011;15:208.
  66. Loughman JA, Hunstad DA. Induction of indoleamine 2,3-dioxygenase by uropathogenic bacteria attenuates innate responses to epithelial infection. J Infect Dis 2012;205:1830-1839. https://doi.org/10.1093/infdis/jis280
  67. Jeon JH, Hong CW, Kim EY, Lee JM. Current understanding on the metabolism of neutrophils. Immune Netw 2020;20:e46.
  68. Kumar RK, Herbert C, Foster PS. The "classical" ovalbumin challenge model of asthma in mice. Curr Drug Targets 2008;9:485-494.
  69. Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 2010;125:1178-1187. https://doi.org/10.1016/j.jaci.2010.04.021
  70. Deng J, Yu XQ, Wang PH. Inflammasome activation and Th17 responses. Mol Immunol 2019;107:142-164. https://doi.org/10.1016/j.molimm.2018.12.024
  71. Guan M, Ma H, Fan X, Chen X, Miao M, Wu H. Dexamethasone alleviate allergic airway inflammation in mice by inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2020;78:106017.
  72. Schwarzenberger P, La Russa V, Miller A, Ye P, Huang W, Zieske A, Nelson S, Bagby GJ, Stoltz D, Mynatt RL, et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J Immunol 1998;161:6383-6389. https://doi.org/10.4049/jimmunol.161.11.6383
  73. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001;194:519-527. https://doi.org/10.1084/jem.194.4.519
  74. Tan HT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, Eljaszewicz A, Moniuszko M, Akdis M, Akdis CA, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy 2019;74:294-307. https://doi.org/10.1111/all.13619