• 제목/요약/키워드: immobilized bacterial carrier

검색결과 5건 처리시간 0.021초

Trichloroethylene으로 오염된 지하수 제거공정의 미생물 다양성 및 분리균주 Pseudomonas sp. DHC8의 특성 (Microbial Diversity of the Trichloroethylene Contaminated Groundwater Treatment System and Characterization of Pseudomonas sp. DHC8)

  • 남지현;신지혜;권기욱;배우근;이동훈
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.336-342
    • /
    • 2013
  • 산업에서 널리 사용되고 있는 Trichloroethylene (TCE)은 토양 및 지하수의 오염을 일으키며, 암 유발물질로 환경에서 반드시 제거해야 하는 물질이다. 본 연구에서는 미생물 고정화 담체를 이용한 TCE로 오염된 지하수 처리 시스템의 세균 군집구조를 조사하고, 우점종을 분리 및 동정하고 TCE 제거특성을 확인하였다. TCE로 오염된 지하수 처리공정의 세균군집을 16S rRNA 유전자 라이브러리의 염기서열 분석방법을 이용하여 조사한 결과, 주요 개체군은 BTEX 분해세균으로 알려진 Pseudomonas 속이었으며 Pseudomonas putida 그룹이 가장 우점하였다. Pseudomonas putida 그룹의 우점은 높은 toluene과 TCE의 농도에서 기인한 것으로 생각된다. TCE로 오염을 제거하기 위한 미생물 반응기에서 toluene과 TCE 분해 세균을 분리 배양하였으며 Pseudomonas sp. DHC8로 명명하였다. 형태학적 특징, 생리 생화학적 특징, 16S rRNA 유전자 염기서열분석 결과 DHC8 균주는 P. putida 그룹에 속하는 것으로 확인되었다. Pseudomonas sp. DHC8을 이용하여 TCE (0.83 mg/L)와 toluene (60.61 mg/L)에 대해 분해실험을 실시하였을 때 12.5시간 동안 TCE는 72.3%, toluene은 100.0% 제거되었다. 또한, TCE와 toluene의 제거속도는 각각 0.02 ${\mu}mol/g$-DCW/h와 2.89 ${\mu}mol/g$-DCW/h였다. 본 연구 결과는 TCE의 생물정화를 위한 반응기의 최대 효율을 유지하기 위한 노력에 도움이 될 것이다.

Hydrogen Sulfide Removal by Immobilized Thiobacillus novellas on $SiO_2$ in a Fluidized Bed Reactor

  • Cha, Jin-Myung;Shin, Hyun-Jae;Roh, Sung-Hee;Kim, Sun-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.320-324
    • /
    • 2007
  • The removal of hydrogen sulfide ($H_2S$) from aqueous media was investigated using Thiobacillus novellas cells immobilized on a $SiO_2$ carrier (biosand). The optimal growth conditions for the bacterial strain were $30^{\circ}C$ and initial pH of 7.0. The main product of hydrogen sulfide oxidation by T. novellus was identified as the sulfate ion. A removal efficiency of 98% was maintained in the three-phase fluidized-bed reactor, whereas the efficiency was reduced to 90% for the two-phase fluidized-bed reactor and 68% for the two-phase reactor without cells. The maximum gas removal capacity for the system was 254 g $H_2S/m^3/h$ when the inlet $H_2S$ loading was $300g/m^3/h(1,500ppm)$. Stable operation of the immobilized reactor was possible for 20 days with the inlet $H_2S$ concentration held to 1,100 ppm. The fluidized bed bioreactor appeared to be an effective means for controlling hydrogen sulfide emissions.

Bioelectrochemical Denitrification Using Permeabilized Ochrobactrum anthropi SY509

  • Choi Kyung-Oh;Song Seung-Hoon;Kim Yang-Hee;Park Doo-Hyun;Yoo Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.678-682
    • /
    • 2006
  • To remove nitrate from wastewater, a novel bioelectrochemical denitrification system is introduced. In this proposed system, biological reactions are coupled with reactions on the electrode, whereby the electrons are transferred to the bacterial enzymes via a mediator as an electron carrier. The denitrification reaction was achieved with permeabilized Ochrobactrum anthropi SY509 containing denitrifying enzymes, such as nitrate reductase, nitrite reductase, and nitrous oxide reductase, and methyl viologen was used as the mediator. The electron transfer from the electrode to the enzymes in the bacterial cells was confirmed using cyclic voltammetry. A high removal efficiency of nitrate was achieved when the bioelectrochemical system was used with the permeabilized cells. Furthermore, when the permeabilized cells were immobilized to a graphite felt electrode using a calcium alginate matrix containing graphite powder, a high removal efficiency was achieved (4.38 nmol/min mg cell) that was comparable to the result when using the free permeabilized cells.

ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF AN IMMOBILIZED BACTERIUM PRODUCING N2 FROM NH4+ UNDER AN AEROBIC CONDITION

  • Park, Kyoung-Joo;Cho, Kyoung-Sook;Kim, Jeong-Bo;Lee, Min-Gyu;Lee, Byung-Hun;Hong, Young-Ki;Kim, Joong-Kyun
    • Environmental Engineering Research
    • /
    • 제10권5호
    • /
    • pp.213-226
    • /
    • 2005
  • To treat wastewater efficiently by a one-step process of nitrogen removal, a new bacterial strain producing $N_2$ gas from ${NH_4}^+$ under an aerobic condition was isolated and identified. The cell was motile and a Gram-negative rod, and usually occurred in pairs. By 16S-rDNA analysis, the isolated strain was identified as Enterobacter asburiae with 96% similarity. The isolate showed that the capacity of $N_2$ production under an oxic condition was approximately three times higher than that under an anoxic condition. Thus, the consumption of ${NH_4}^+$ by the isolate was significantly different in the metabolism of $N_2$ production under the two different environmental conditions. The optimal conditions of the immobilized isolate for $N_2$ production were found to be pH 7.0, $30^{\circ}C$ and C/N ratio 5, respectively. Under all the optimum reaction conditions, $N_2$ production by the immobilized isolate resulted in reduction of ORP with both the consumption of DO and the drop of pH. The removal efficiencies of $COD_{Cr}$, and TN were 56.1 and 60.9%, respectively. The removal rates of $COD_{Cr}$, and TN were the highest for the first 2.5 hrs with the removal $COD_{Cr}/TN$ ratios of 32.1, and afterwards the rates decreased as reaction proceeded. For application of the immobilized isolate to a practical process of ammonium removal, a continuous operation was executed with a synthetic medium of a low C/N ratio. The continuous bioreactor system exhibited a satisfactory performance at 12.1 hrs of HRT, in which the effluent concentrations of ${NH_4}^+$-N was measured to be 15.4 mg/L with its removal efficiency of 56.0%. The maximum removal rate of ${NH_4}^+$-N reached 1.6 mg ${NH_4}^+$-N/L/hr at 12.1 hrs of HRT(with N loading rate of $0.08\;Kg-N/m^3$-carrier/d). As a result, the application of the immobilized isolate appears a viable alternative to the nitrification-denitrification processes.

여러가지 조건하에서 Brevibacterium sp. CH1의 Nitrile Hydratase의 안정성 (A Study on Stability of Nitrile Hydratase of Brevibacterium sp. CHI Under the Various Conditions)

  • 황준식;장호남
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.56-60
    • /
    • 1990
  • Brevibacterium sp. CH1 균주가 흙으로부터 분리하여 아크릴로니트릴을 아크릴아마이드로 생변화를 수행하는데 필요한 효소를 생산하기 위하여 사용하였다. 여러가지 고정화 방법과 효소 안정성이 조사 되었다. Nitrile hydratase는 free cell에 대하여 pH7에서 최대한 안정성을 보여주었다. EDTA와 phenyl menthl fluoride을 protease inhibitor로 선정하여 inhibitor 농도를 변화시키면서 효소의 저장안정성을 평가하였다. 아크릴아마이드가 안정성 및 물리화학적 강도를 고려 할 때 가장 좋은 carrier였다. 고정화 세포의 저장안정성은 4$^{\circ}C$에서 gel상의 아크릴아마이드 농도가 증가함에 따라 감소하였고, 25% 이상의 아크릴아마이드 농도에서 안정성이 매우 낮았다.

  • PDF