• 제목/요약/키워드: imaging sensor

검색결과 497건 처리시간 0.024초

Simple Graphical Selection of Optical Materials for an Athermal and Achromatic Design Using Equivalent Abbe Number and Thermal Glass Constant

  • Kim, Young-Ju;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.182-187
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glasses to simultaneously achromatize and athermalize an imaging lens made of materials in contact. An athermal glass map that plots thermal glass constant versus inverse Abbe number is derived through analysis of optical glasses and plastic materials in visible light. By introducing the equivalent Abbe number and equivalent thermal glass constant, although it is a multi-lens system, we have a simple way to visually identify possible optical materials. Applying this method to design a phone camera lens equipped with quarter inch image sensor having 8-mega pixels, the thermal defocuses over $-20^{\circ}C$ to $+60^{\circ}C$ are reduced to be much less than the depth of focus of the system.

Mapping Within-field Variability Using Airborne Imaging Systems: A Case Study from Missouri Precision Agriculture

  • Hong, S.Y.;Sudduth, K.A.;Kitchen, N.R.;Palm, H.L.;Wiebold, W.J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1049-1051
    • /
    • 2003
  • This study investigated the use of airborne image data to provide estimates of within -field variability in soil properties and crop growth as an alternative to extensive field data collection. Hyperspectral and multispectral images were acquired in 2000, 2001, and 2002 for central Missouri experimental fields. Data were converted to reflectance using chemically-treated reference tarps with known reflectance levels. Geometric distortion of the hyperspectral pushbroom sensor images was corrected with a rubber sheeting transformation. Statistical analyses were used to relate image data to field-measured soil properties and crop characteristics. Results showed that this approach has potential; however, it is important to address a number of implementation issues to insure quality data and accurate interpretations.

  • PDF

Satellite Monitoring of Smoke Aerosol Plume during the Russian Fire Episode of May 2003 over Northeast Asia

  • Lee, Kwon H.;Kim, Young J.;Hoyningen-Huene, Wolfgang V.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.491-492
    • /
    • 2003
  • The large amount of smoke produced near Lake Baikal was transported to Northeast Asia with high AOT (Aerosol Optical Thickness) as seen in satellite images. Aerosol retrieval using a separation technique was applied to MODIS (Moderate Imaging Spectroradiometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data observed during 14-22 May 2003. Large AOT, 2.0~5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, resulting in high PM10 concentration was observed at the surface.

  • PDF

Simple image artifact removal technique for more accurate iris diagnosis

  • Kim, Jeong-lae;Kim, Soon Bae;Jung, Hae Ri;Lee, Woo-cheol;Jeong, Hyun-Woo
    • International journal of advanced smart convergence
    • /
    • 제7권4호
    • /
    • pp.169-173
    • /
    • 2018
  • Iris diagnosis based on the color and texture information is one of a novel approach which can represent the current state of a certain organ inside body or the health condition of a person. In analysis of the iris images, there are critical image artifacts which can prevent of use interpretation of the iris textures on images. Here, we developed the iris diagnosis system based on a hand-held typed imaging probe which consists of a single camera sensor module with 8M pixels, two pairs of 400~700 nm LED, and a guide beam. Two original images with different light noise pattern were successively acquired in turns, and the light noise-free image was finally reconstructed and demonstrated by the proposed artifact removal approach.

LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구 (A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters)

  • 이주영
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

Angle-sensitive Pixels Based on Subwavelength Compound Gratings

  • Meng, Yunlong;Hu, Xuemei;Yang, Cheng;Shen, Xinyu;Cao, Xueyun;Lin, Lankun;Yan, Feng;Yue, Tao
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, we present a new design for angle-sensitive pixels (ASPs). The proposed ASPs take advantage of subwavelength compound gratings to capture the light angle, which enables pixel size to reach the wavelength scale of 0.7 ㎛ × 0.7 ㎛. The subwavelength compound gratings are implemented by the wires of the readout circuit inherent to the standard complementary metal-oxide-semiconductor manufacturing process, thus avoiding additional off-chip optics or post-processing. This technique allows the use of two pixels for horizontal or vertical angle detection, and can determine the light's angle in the range from -45° to +45°. The proposed sensor enables surface-profile reconstruction of microscale samples using a lensless imaging system.

Piezoelectric Ultrasound MEMS Transducers for Fingerprint Recognition

  • Jung, Soo Young;Park, Jin Soo;Kim, Min-Seok;Jang, Ho Won;Lee, Byung Chul;Baek, Seung-Hyub
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.286-292
    • /
    • 2022
  • As mobile electronics become smarter, higher-level security systems are necessary to protect private information and property from hackers. For this, biometric authentication systems have been widely studied, where the recognition of unique biological traits of an individual, such as the face, iris, fingerprint, and voice, is required to operate the device. Among them, ultrasound fingerprint imaging technology using piezoelectric materials is one of the most promising approaches adopted by Samsung Galaxy smartphones. In this review, we summarize the recent progress on piezoelectric ultrasound micro-electro-mechanical systems (MEMS) transducers with various piezoelectric materials and provide insights to achieve the highest-level biometric authentication system for mobile electronics.

Characterization of O2 ionosorption induced potential changing property of SnO2 nanowire with Kelvin force microscopy (KFM)

  • Heo, Jinhee;Won, Soonho
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.359-362
    • /
    • 2012
  • We have employed Kelvin force microscopy (KFM) system to measure the potential change of a single SnO2 nanowire which had been synthesized on the Au thin film by a thermal process. By using the KFM probing technique, Rh coated conducting cantilever can approach a single SnO2 nanowire in nano scale and get the potential images with oscillating AC bias between Au electrode and cantilever. Also, during imaging the potential status, we controlled the concentration of oxygen in measuring chamber to change the ionosorption rate. From the results of such experiments, we verified that the surface potential as well as doping type of a single SnO2 nanowire could be changed by oxygen ionosorption.

CMOS 기반 X선 영상의 해상력 향상을 위한 Gd2O2S:Tb 미세형광체 필름 제작 및 영상 질 평가 (Fabrication of Gd2O2S:Tb fine scintillator film and evaluation of image quality for resolution improvement of X-ray imaging based on CMOS)

  • 강상식;최영준;정봉재;노시철;조창훈;윤인찬;박지군
    • 한국방사선학회논문지
    • /
    • 제5권5호
    • /
    • pp.283-287
    • /
    • 2011
  • 본 연구는 고해상도 디지털 X선 영상 검출기 적용을 위해 미세 $Gd_2O_2S$:Tb 형광체 분말을 저온 액상법을 이용하여 합성하였다. 제조된 형광체 분말을 이용하여 입자침전법을 이용하여 형광체 필름을 제작하여 발광특성을 조사하였다. 측정결과, Tb 첨가농도에 따른 상대적인 발광량 측정결과 5 wt%의 첨가농도에서 가장 높은 발광효율을 보였으며, 첨가농도가 증가할수록 소광현상에 의한 발광강도가 급격히 감소하는 경향을 보였다. 또한 270 ${\mu}m$ 두께의 $Gd_2O_2S$:Tb에서 2945 pC/$cm^2$/mR의 발광 강도를 가졌으며, 발광 강도가 거의 포화되는 것을 관찰할 수 있었다. 끝으로 제조된 형광체의 영상획득 성능을 평가하기 위해 상용화된 CMOS 센서를 이용하여 X선 영상을 획득하여 MTF, NPS를 측정하여 DQE 평가를 수행하였다. 측정결과, DQE(0)의 값은 37%로 다소 낮은 값을 보였다. 향후 필름 제조 공정상의 문제점을 해결한다면, DQE를 개선할 수 있을 것으며, 고해상도 의료 방사선 영상 시스템 적용에 유용하게 적용 가능할 것으로 판단된다.