• 제목/요약/키워드: imaging physics

검색결과 630건 처리시간 0.026초

The Standard Processing of a Time Series of Imaging Spectral Data Taken by the Fast Imaging Solar Spectrograph on the Goode Solar Telescope

  • Chae, Jongchul;Kang, Juhyeong;Cho, Kyuhyoun
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • The Fast Imaging Solar Spectrograph (FISS) on the Goode Solar Telescope (GST) at Big Bear Solar Observatory is the imaging Echelle spectrograph developed by the Solar Astronomy Group of Seoul National University and the Solar and Space Weather Group of Korea Astronomy and Space Science Institute. The instrument takes spectral data from a region on the Sun in two spectral bands simultaneously. The imaging is done by the organization of intensity data obtained from the fast raster scan of the slit over the field of view. Since the scan repeats many times, the whole set of data can be used to construct the movies of monochromatic intensity at arbitrary wavelengths within the spectral bands, and those of line-of-sight velocity inferred from different spectral lines. So far there are two standard observing configurations: one recording the $H{\alpha}$ line and the Ca II 8542 line simultaneously, and the other recording the Na I D2 line and Fe I 5435 line simultaneously. We have developed the procedures to produce the standard data for each observing configuration. The procedures include the spatial alignment, the correction of spectral shift of instrumental origin, and the lambdameter measurement of the line wavelength. The standard data include the movie of continuum intensity, the movies of intensity and velocity inferred from a chromospheric spectral line, the movies of intensity and velocity inferred from a photospheric line. The processed standard data will be freely available online (fiss.snu.ac.kr) to be used for research and public outreach. Moreover, the IDL procedures will be provided on request as well so that each researcher can adapt the programs for their own research.

  • PDF

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • 제26권6호
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

집적결상법에서 기본영상의 크기 변환에 따른 3차원 재생영상의 특성 분석 (Elemental image resizing and the analysis of the reconstructed three dimensional image in the integral imaging system)

  • 서장일;신승호
    • 한국광학회지
    • /
    • 제16권3호
    • /
    • pp.225-234
    • /
    • 2005
  • 3차원 영상 재생을 위한 집적결상법에서 픽업시 기본영상의 크기는 기본렌즈 크기, 기본렌즈와 기본영상 사이의 간격 등 몇 가지 변수들과 일정한 관계를 갖는다. 이 기하학적 관계들을 분석하고, 기본영상의 크기 및 거리가 픽업시와 다른 경우 기본영상의 배열이나 개별적인 크기 변환에 의해 재생되는 3차원영상의 특성변화를 이론적으로 분석하고 실험을 통해 확인하였다.

Optimized Optomechanical Anti-Aliasing Filter for Digital Camera Photography

  • Lee, Sang Won;Chang, Ryungkee;Moon, Sucbei
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.456-466
    • /
    • 2015
  • We investigated an anti-aliasing (AA) filter for digital camera photography by which the excessively high-frequency components of the image signal are suppressed to avoid the aliasing effect. Our optomechanical AA filter was implemented by applying rapid relative motions to the imaging sensor. By the engineered motion blur of the mechanical dithers, the effective point-spread function (PSF) of the imaging system could be tailored to reject the unwanted high-frequency components of the image. For optimal operations, we developed a spiral filter motion protocol that could produce a Gaussian-like PSF. We experimentally demonstrated that our AA filter provides an improved filtering characteristic with a better compromise of the rejection performance and the signal loss. We also found that the pass band characteristic can be enhanced further by a color-differential acquisition mode. Our filter scheme provides a useful method of digital photography for low-error image measurements as well as for ordinary photographic applications where annoying $moir{\acute{e}}$ patterns must be suppressed efficiently.

3차원 영상 재생을 위한 집적결상법에서 기본영상 재조합을 통한 재생영상의 깊이 변환 (Depth-Conversion in Integral Imaging Three-Dimensional Display by Means of Elemental Image Recombination)

  • 서장일;신승호
    • 한국광학회지
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2007
  • 3차원 영상 재생을 위한 집적결상법에서 기본영상의 재조합을 통한 재생영상의 깊이변환에 관하여 연구하였다. 렌즈 배열 또는 카메라 배열 등을 통하여 획득된 영상 배열을 적절한 조건 하에서 재조합하여 재생함으로써 재생영상의 깊이에 대해 도치(pseudoscopic) 영상 또는 정치(orthoscopic) 영상, 허상, 실상 뿐만 아니라 임의의 깊이로의 왜곡 없는 변환이 가능하다. 본 논문에서는 각 변환에 대한 재조합 조건을 이론적으로 유도하고 실험을 통하여 확인하였다.

Requirements for Future Digital Radiology System

  • Kim, Y.M.;Park, H.W.;Haynor, D.R.
    • 한국의학물리학회지:의학물리
    • /
    • 제2권1호
    • /
    • pp.3-16
    • /
    • 1991
  • Abstract. An area of particularly rapid technological growth in the last 15 years has been medical imaging (conventional X-ray, ultrasound, X-ray computed tomography (CT), magnetic resonance imaging (MRI). As the number and complexity of imaging studies rises, it becomes ever more important to distribute these images and the associated diagnoses in a timely and cost-effective fashion. The purpose of this paper is to describe the requirements for a future digital radiology system which will efficiently handle the large volume of images that generated, add new functionality to improve productivity of physicians, technologists, and other health care providers, and provide enough flexibility to allow the system to grow as medical image technology grows.

  • PDF

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • 제51권2호
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Determination of Transverse Magnifications by Distortion Analysis

  • Lee, Sukmock;Kim, Byungoh
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.136-141
    • /
    • 2013
  • A method to determine the transverse magnification (TM) of an imaging system is discussed. This method is different in that TM can be determined accurately by using distortion analysis. We demonstrate the validity of the method via numerical simulation with accompanying experimental data for a thick bi-convex lens.