• 제목/요약/키워드: imaging mode

검색결과 332건 처리시간 0.025초

Gated Cardiac Blood Pool scan에서의 심장 주위 배후방사능 관심영역 설정시 산란선의 영향을 감소시키기 위한 연구 (Study a Technique for Reducing the Influence of Scattered Rays from Surrounding Organs to the Heart during Gated Cardiac Blood Pool scan)

  • 김정열;박훈희;남궁혁;조석원;김재삼;이창호
    • 핵의학기술
    • /
    • 제12권1호
    • /
    • pp.33-38
    • /
    • 2008
  • Purpose: The Gated cardiac blood pool scan is non-invasive method that a quantitative evaluation of left ventricular function. Also this scan have shown the value of radionuclide ejection fraction measurements during the course of chemotherapy as a predictor of cardiac toxicity. Therefore a reliable method of monitoring its cardiotoxic effects is necessary. the purpose of this study is to minimize the overestimate of left ventricular ejection fraction (LVEF) by modified body position to reduce the influence of scattered rays from surrounding organs of the heart in the background region of interest. Materials and Methods: Gated cardiac blood pool scan using in vivo $^{99m}Tc$-red blood cell (RBC) was carried out in 20 patients (mean $44.8{\pm}8.6$ yr) with chemotherapy for a breast carcinoma. Data acquisition requires about 600 seconds and 24 frames of one heart cycle by the multigated acquisition mode, Synchronization deteriorates toward the end of the cycle and with the distance from the trigger signal (R-wave) by ECG gating. Gated cardiac blood pool scan was studied with conventional method (supine position and the detector head in $30-45^{\circ}$ left anterior oblique position and caudal $10-20^{\circ}$ tilt) and compared with modified method (left lateral flexion position with 360 mL of drinking water). LVEF analysis was performed by using the automatically computer mode. Results: The ROI counts of modified scan method were lower than LV conventional method ($1429{\pm}251$ versus $1853{\pm}243$, <0.01). And LVEF of modified method was also decrease compared with conventional method ($58.3{\pm}5.6%$ versus $65.3{\pm}6.1%$, <0.01). Imaging analysis indicated that stomach was expanded because of water and spleen position was changed to lateral inferior compared with conventional method. Conclusion: This study shows that the modified method in MUGA reduce the influence of scattered rays from surrounding organs. Because after change the body position to left lateral flexion and drinking water, the location of spleen, left lobe of liver and stomach had changed and they could escaped from background ROI. Therefore, modified method could help to minimize the overestimate LVEF (%).

  • PDF

Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations

  • Shokri, Abbas;Eskandarloo, Amir;Norouzi, Marouf;Poorolajal, Jalal;Majidi, Gelareh;Aliyaly, Alireza
    • Imaging Science in Dentistry
    • /
    • 제48권1호
    • /
    • pp.11-19
    • /
    • 2018
  • Purpose: This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. Materials and Methods: The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact(control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. Results: In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. Conclusion: The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구 (Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode)

  • 홍상훈
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.447-460
    • /
    • 2022
  • 인공위성 영상레이더 위상간섭기법은 널리 활용되고 있는 원격탐사 기술로서 지진, 화산, 지반침하 등으로부터 발생한 단단한 지각 표면의 변위를 매우 정밀하게 주기적으로 관측할 수 있는 연구 활용분야의 한 종류이다. 습지대 환경처럼 수상 표면에 식생이 존재하는 경우에는 지표면과 동일한 방법을 적용하여 넓은 지역에 대한 높은 공간해상도의 수위 변화 지도 제작이 가능하다. 현재 다양한 파장 대역의 인공위성 영상레이더 시스템이 운용 중에 있으며 여기에는 넓은 지역에 대한 영상을 효과적으로 획득할 수 있는 광역 관측 ScanSAR 모드를 제공하는 위성도 다수 포함되어 있다. 본 논문의 연구 지역인 콜롬비아 북부의 Ciénaga Grande de Santa Marta (CGSM) 습지대는 카리브 해안을 따라 고지대에 위치한 광대한 습지 지역이다. CGSM 습지대는 해수면 상승과 기후 변화와 같은 자연적인 원인 뿐만 아니라 20세기 후반부터 시작된 농업개발 및 도시확장 등의 다양한 인간 활동으로 인한 심각한 환경적 위협을 받고 있다. 최근 해당 습지 지역에 대한 생태학적 중요성이 대두되면서 해당 습지를 보호하고 복원하기 위한 다양한 계획이 진행 중에 있다. 주기적인 습지대 환경 모니터링에 있어 수위 변화 관측은 매우 중요한 자료를 제공하며 일반적으로 수위계와 같은 현장관측 자료 등에 의존하는 경우가 많다. 수위계의 경우 시간적으로 연속적인 자료 관측이 가능하지만 공간적 분포를 이해하기에는 어려운 경우가 많다. 본 연구에서는 현장 관측의 공간적 해상도의 부족함을 보완하기 위한 L-밴드 ALOS-2 PALSAR-2 ScanSAR 광역 관측 모드 자료의 영상레이더 위상간섭기법 습지대 수위 변화 관측 활용 가능성에 대해 평가하고자 한다. 광역 관측 모드의 공간해상도 및 위상간섭도 품질 비교를 위해 ALOS-2 PALSAR-2 stripmap 고해상 모드와 함께 분석하였다.

Carbachol Regulates Pacemaker Activities in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • So, Keum Young;Kim, Sang Hun;Sohn, Hong Moon;Choi, Soo Jin;Parajuli, Shankar Prasad;Choi, Seok;Yeum, Cheol Ho;Yoon, Pyung Jin;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.525-531
    • /
    • 2009
  • We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and $Ca^{2+}$-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of -70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic $M_3$ receptor antagonist, but not by methotramine, a muscarinic $M_2$ receptor antagonist. Intracellular $GDP-{\beta}-S$ suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external $Na^+$-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external $Ca^{2+}$. In recording of intracellular $Ca^{2+}$ concentrations using fluo 3-AM dye, carbachol increased intracellular $Ca^{2+}$ concentrations with increasing of $Ca^{2+}$ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic $M_3$ receptors by a G-protein dependent intracellular $Ca^{2+}$ release mechanism.

cone beam형 전산화 단층촬영장치를 이용한 절치관의 연구 (A study of incisive canal using a cone beam computed tomography)

  • 김규태;황의환;이상래
    • Imaging Science in Dentistry
    • /
    • 제34권1호
    • /
    • pp.7-12
    • /
    • 2004
  • Purpose: To investigate the anatomical structure of the incisive canal radiographically by a cone beam computed tomography. Materials and Methods: 38 persons (male 26, female 12) were chosen to take images of maxillary anterior region in dental CT mode using a cone beam computed tomography. The tube voltage were 65, 67, and 70kVp, the tube current was 7 mA, and the exposure time was 13.3 seconds. The FH plane of each person was parallel to the floor. The images were analysed on the CRT display. Results: The mean length of incisive canal was 15.87 mm±2.92. The mean diameter at the side of palate and nasal fossa were 3.49 mm±0.76 and 3.89 mm± 1.06, respectively. In the cross-sectional shape of incisive canal, 50% were round, 34.2% were ovoid, and 15.8% were lobulated. 87% of incisive canal at the side of nasal fossa have one canal, 10.4% have two canals, and 2.6% have three canals, but these canals were merged into one canal in the middle portion of palate. The mean angles of the long axis of incisive canal and central incisor to the FH plane were 110.3°±6.96 and 117.45°±7.41, respectively. The angles of the long axis of incisive canal and central incisor to the FH plane were least correlated (r= 0.258). Conclusion : This experiment suggests that a cone beam computed radiography will be helpful in surgery or implantation on the maxillary incisive area.

  • PDF

적응적인 블록 모드를 이용한 집적 영상의 효율적인 압축 방법 (An Efficient Compression Method of Integral Images Using Adaptive Block Modes)

  • 전주일;강현수
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 논문에서는 집적 영상을 효율적으로 압축하는 방법을 제안한다. 집적 영상은 3차원 영상을 기록하고 표현하는 대표적인 기술이다. 제안된 방법은 3D 이산 코사인 변환(3D-DCT)를 기반으로 하고 있다. 집적 영상 부호화에서 3D-DCT는 인접요소 영상간의 중복성을 줄이는 효율적인 압축 방법으로 알려져 있다. 제안방법은 3D-DCT에 기반 하면서 적응적인 블록 모드를 이용한 효과적인 집적영상 압축 방법으로서, 영상의 특성에 따라 적응적으로 3D-DCT 블록을 구성함으로써 가변블록 크기 3D-DCT 블록을 생성하고, 이 가변블록 크기의 3D 블록에 대해 3D-DCT를 수행한다. 실험 결과를 보면 제안방법이 기존 방법과 비교해서 더욱 높은 압축 효율을 보여주었다. 특히 영상이 복잡하여 많은 비트량이 발생하는 영상이 오버헤드 비트의 영향이 적기 때문에 더 좋은 압축 효율을 보여주었다.

Design modification and structural behavior study of a CFRP star sensor baffle

  • Vinyas, M.;Vishwas, M.;Venkatesha, C.S.;Rao, G. Srinivasa
    • Advances in aircraft and spacecraft science
    • /
    • 제3권4호
    • /
    • pp.427-445
    • /
    • 2016
  • Star sensors are the attitude estimation sensors of the satellite orbiting in its path. It gives information to the control station on the earth about where the satellite is heading towards. It captures the images of a predetermined reference star. By comparing this image with that of the one captured from the earth, exact position of the satellite is determined. In the process of imaging, stray lights are eliminated from reaching the optic lens by the mechanical enclosures of the star sensors called Baffles. Research in space domain in the last few years is mainly focused on increased payload capacity and reduction in launch cost. In this paper, a star sensor baffle made of Aluminium is considered for the study. In order to minimize the component weight, material wastage and to improve the structural performance, an alternate material to Aluminium is investigated. Carbon Fiber Reinforced Polymer is found to be a better substitute in this regard. Design optimisation studies are carried out by adopting suitable design modifications like implementing an additional L-shaped flange, Upward flange projections, downward flange projections etc. A better configuration of the baffle, satisfying the design requirements and achieving manufacturing feasibility is attained. Geometrical modeling of the baffle is done by using UNIGRAPHICS-Nx7.5(R). Structural behavior of the baffle is analysed by FE analysis such as normal mode analysis, linear static analysis, and linear buckling analysis using MSC/PATRAN(R), MSC-NASTRAN(R) as the solver to validate the stiffness, strength and stability requirements respectively. Effect of the layup sequence and the fiber orientation angle of the composite layup on the stiffness are also studied.

Does the metal artifact reduction algorithm activation mode influence the magnitude of artifacts in CBCT images?

  • Fontenele, Rocharles C.;Nascimento, Eduarda H.L.;Santaella, Gustavo M.;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • 제50권1호
    • /
    • pp.23-30
    • /
    • 2020
  • Purpose: This study was conducted to assess the effectiveness of a metal artifact reduction (MAR) algorithm activated at different times during cone-beam computed tomography (CBCT) acquisition on the magnitude of artifacts generated by a zirconium implant. Materials and Methods: Volumes were obtained with and without a zirconium implant in a human mandible, using the OP300 Maxio unit. Three modes were tested: without MAR, with MAR activated after acquisition, and with MAR activated before acquisition. Artifacts were assessed in terms of the standard deviation (SD) of gray values and the contrast-to-noise ratio (CNR) in 6 regions of interest with different distances (10 to 35 mm, from the nearest to the farthest) and angulations(70° to 135°) from the implant region. Results: In the acquisitions without MAR, the regions closer to the implant(10 and 15mm) had a higher SD and lower CNR than the farther regions. When MAR was activated (before or after), SD values did not differ among the regions (P>0.05). The region closest to the implant presented a significantly lower CNR in the acquisitions without MAR than when MAR was activated after the acquisition; however, activating MAR before the acquisition did not yield significant differences from either of the other conditions. Conclusion: Both modes of MAR activation were effective in decreasing the magnitude of CBCT artifacts, especially when the effects of the artifacts were more noticeable.

Power Doppler ultrasound-guided sialography using the phenomenon of increased blood flow: A technical report

  • Oh, Song Hee;Seo, Yu-Kyeong;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • 제49권4호
    • /
    • pp.301-306
    • /
    • 2019
  • Purpose: This report presents a procedure for performing power Doppler ultrasound-guided sialography using the phenomenon of increased blood flow and illustrates its application to practical patient cases. Materials and Methods: The salivary gland was scanned using ultrasound equipment (GE LOGIQ5 Expert® device; GE Medical Systems, Milwaukee, WI, USA) to identify pathological findings related to the patient's chief complaint. To identify the orifice of the main duct, it should be cannulated using a lacrimal dilator. After inserting the catheter into the cannulated main duct, the position of the catheter within the duct was confirmed by ultrasound. A contrast agent was injected until the patient felt fullness, and ultrasound (B-mode) was used to confirm whether the contrast agent filled the main canal and secondary and tertiary ducts. Then, power Doppler ultrasound was performed to determine whether the salivary gland had increased blood flow. Results: In 2 cases in this report, a power Doppler ultrasound scan showed a significant increase in blood flow after contrast medium injection, which was not observed on a preoperative scan. Conclusion: Power Doppler ultrasound was found to be a simple, safe, and effective tool for real-time sialography monitoring.

분해능 30 cm급의 고해상도 SAR(NexSAR) 개발 (Development of High Resolution SAR(NexSAR) with 30 cm Resolution)

  • 공영균;김형철;김승환;김수범;임재학
    • 한국전자파학회논문지
    • /
    • 제20권2호
    • /
    • pp.183-192
    • /
    • 2009
  • SAR(Synthetic Aperture Radar)는 전천후로 지표면의 영상을 획득할 수 있는 장비로 군사 및 민수용 목적으로 다양하게 사용되고 있다. 특히 고해상도의 SAR 영상은 군사 표적의 식별을 위해 매우 중요하여 최근에는 서브 미터급의 분해능을 갖는 SAR 시스템의 개발의 중요성이 부각되고 있는 상황이다. 이에 LIG넥스원은 고해상도 SAR의 개발에 필요한 핵심 기술 확보를 목적으로 대역폭 600 MHz, 분해능 30 cm 이하의 SAR 시스템인 NexSAR를 개발하였다. 파형 발생기 대역폭 600 MHz를 달성하기 위하여 2개의 DDS 출력을 SSB 변조하였으며, 고해상도 모드에서 ADC 샘플링 속도를 낮추기 위하여 deramp 기법을 적용하였다. NexSAR는 stripmap 및 spotlight 모드 영상 획득이 가능하며 지상 및 비행 시험을 통해 기능 및 성능을 검증하였다.