• Title/Summary/Keyword: imaging mode

Search Result 336, Processing Time 0.024 seconds

3D Ultrasound Panoramic Image Reconstruction using Deep Learning (딥러닝을 활용한 3차원 초음파 파노라마 영상 복원)

  • SiYeoul Lee;Seonho Kim;Dongeon Lee;ChunSu Park;MinWoo Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.

A Study to Compare the Radiation Absorbed Dose of the C-arm Fluoroscopic Modes

  • Cho, Jae-Hun;Kim, Jae-Yun;Kang, Joo-Eun;Park, Pyong-Eun;Kim, Jae-Hun;Lim, Jeong-Ae;Kim, Hae-Kyoung;Woo, Nam-Sik
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.199-204
    • /
    • 2011
  • Background: Although many clinicians know about the reducing effects of the pulsed and low-dose modes for fluoroscopic radiation when performing interventional procedures, few studies have quantified the reduction of radiation-absorbed doses (RADs). The aim of this study is to compare how much the RADs from a fluoroscopy are reduced according to the C-arm fluoroscopic modes used. Methods: We measured the RADs in the C-arm fluoroscopic modes including 'conventional mode', 'pulsed mode', 'low-dose mode', and 'pulsed + low-dose mode'. Clinical imaging conditions were simulated using a lead apron instead of a patient. According to each mode, one experimenter radiographed the lead apron, which was on the table, consecutively 5 times on the AP views. We regarded this as one set and a total of 10 sets were done according to each mode. Cumulative exposure time, RADs, peak X-ray energy, and current, which were viewed on the monitor, were recorded. Results: Pulsed, low-dose, and pulsed + low-dose modes showed significantly decreased RADs by 32%, 57%, and 83% compared to the conventional mode. The mean cumulative exposure time was significantly lower in the pulsed and pulsed + low-dose modes than in the conventional mode. All modes had pretty much the same peak X-ray energy. The mean current was significantly lower in the low-dose and pulsed + low-dose modes than in the conventional mode. Conclusions: The use of the pulsed and low-dose modes together significantly reduced the RADs compared to the conventional mode. Therefore, the proper use of the fluoroscopy and its C-arm modes will reduce the radiation exposure of patients and clinicians.

Evaluation of cardiac function by tissue Doppler imaging in children with cancer (Tissue Doppler imaging을 이용한 소아 종양 환자에서의 심기능 평가)

  • Kim, Yeo Hyang
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.417-423
    • /
    • 2006
  • Purpose : The objectives of this study were to assess ventricular function by tissue Doppler imaging in children who were receiving chemotherapy or who had received chemotherapy, and to apply repeated tissue Doppler imaging to make an early assessment in cardiac toxicity studies. Methods : This study was conducted on 23 oncology patients on-treatment or off-treatment from April 2005 to July 2005 at Dongsan Medical Center, Keimyung University. All patients(group 1) were divided into two groups, fractional shortening(FS) over 29 percent(group 2) and FS under 28 percent (group 3) in the first category. These same patients were also divided into the following groups : group treated with anthracyclin(group 4) and group treated without anthracyclin(group 5). Deceleration time(DT), isovolumic relaxation time(IVRT), FS, peak early diastolic(E), and peak late diastolic (A) velocity of transmitral flow were measured by M-mode and pulsed wave Doppler. Systolic(Sm), peak early diastolic(Em), and peak late diastolic(Am) velocity in apical 4-chamber and 2-chamber views were measured by tissue Doppler imaging. The author calculated a modified Tei index, E/A, E/Em ratio by using measured values. Results : Twenty three patients were enrolled : 12 boys and 11 girls. The average age of patients was 8 years and 4 months. Thirteen out of 23 patients were in the group treated with anthracyclin (group 4) and 6 had FS under 28 percent(group 3). E/Em ratio showed a significant difference between group 1 and control group($6.46{\pm}1.85$ vs $7.06{\pm}1.64$, P<0.05). Other parameters had no difference statistically. Conclusion : This study showed that the change of cardiac function developed earlier in diastolic function than in systolic function, as E/Em ratio reflecting the mean LV diastolic pressure showed a significant difference between the control group and chemotherapy groups. Echocardiography using tissue Doppler imaging is a non-invasive, comfortable and reliable method for post-chemotherapy follow up.

The research for the enhancement of depth of focus by elliptical polarization illumination(EPI) (타원편광 조명에 의한 초점심도 향상에 관한 연구)

  • 박정보;김기호;이성묵
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.146-150
    • /
    • 1998
  • To enhance the resolution and the depth of focus of the patterns whose size reaches the optical resolution limits, the various imaging methods are being tried. Generally in the linear polarization illumination methods, the contrast gap exists between TE mode TM mode according to the pattern direction. However, through the previous research, the elliptical polarization illumination(EPI) method was proposed to overcome this contrast gap. In this research, we investigated the optimal polarization condition to be able to enhance the depth of focus(DOF) for the optional mask which is containing the opposite direction patterns by applying the various polarization conditions including EPI. The DOF according to each polarization condition was obtained by ED-Tree(Exposure-Defocus Tree) for the given exposure dose and CD error boundaries. As the result, we can ascertain th effect of EPI for the enhancement of DOF in some condition of optical system.

  • PDF

A study of the high resolution Ultrasound Diagnostic system for Dermatology (피부학(Dermatology)을 위한 고해상도 초음파 진단 장치에 관한 연구)

  • Lew, Jeom-Soo;Lim, Chun-Sung;Kim, Young-Kil
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.66-71
    • /
    • 1998
  • High spatial resolution ultrasonic imaging is necessary in several fields of investigation, in order to permit greater precision of clinical diagnosis in the dermatology, ophthalmology etc. We present a B-mode scan system using sector scanning probe of 20MHz center frequency. This developed system allow the high resolution image of 250${\mu}m$ in lateral and 80${\mu}m$ in axial, which of display the size of a $5mm {\times} 5mm$ image with 20 frames/sec. We have shown the images of various structural elements of the human skin and of the nail. We have compared the skin images obtained for each of the different age and we have shown in a general with the age, the atrophy of the skin thickness and the appearance of the abnormal hypoechogene band under epidermis (named SENEB : Sub Epidermal Non Echogene Band).

  • PDF

Performance Analysis of Quad-pol SAR System for Wide-Swath Operation Mode (광역관측 운용 모드에 대한 Quad-pol SAR 시스템의 성능 분석)

  • Lim, Jung-Hwan;Yoon, Seong Sik;Lee, Jae-Wook;Lee, Taek-Kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this study, we propose a performance analysis of a quadrature-polarimetric(quad-pol) synthetic aperture radar(SAR) system for wide-swath operation mode and compare it with a single-pol system based on the operation mode. To achieve a shorter revisit time for an SAR satellite, we must observe a wide area, and two SAR operation modes exist for this purpose, which are called ScanSAR and SweepSAR. In general, a quad-pol SAR system can obtain a greater variety of information about a target than a single-pol system. Because this system affects system performance parameters, analyzing these effects is required. Based on a performance analysis of the wide-swath quad-pol SAR system, the system parameters and appropriate operation mode can be selected to satisfy the performance requirements.

Study of 68Ga Labelled PET/CT Scan Parameters Optimization (68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구)

  • In Suk Kwak;Hyuk Lee;Si Hwal Kim;Seung Cheol Moon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.

Development of Flexible Ultrasound System for Elastography (탄성 영상법 개발을 위한 유연성 높은 초음파 시스템의 구현)

  • Kim, D.I.;Lee, S.Y.;Cho, M.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Recently, several ultrasound imaging techniques for tissue characterization have been developed. Among them, ultrasound elastography is regarded as the most promising modality and has been rapidly developed. One of ultrasound elastography techniques is shear modulus imaging. Normal and cancerous tissues show big difference of shear moduli and they have good image contrast. However shear wave elastography requires more complicated hardware and more computations for image reconstruction algorithm. Therefore new efficient techniques are being developed. In this paper, we have developed a very flexible ultrasound system for elastography experiments. The developed system has capabilities to acquire ultrasound RF data of all channels and generate arbitrary ultrasound pulse sequences. It has a huge amount of memories for RF data acquisition and a simple and flexible pulse generator. We have verified the performance of the system showing conventional B-mode images and preliminary results of elastography. The developed system will be used to verify our own reconstruction algorithm and to develop more efficient elastography techniques.

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.