• Title/Summary/Keyword: imaging device

Search Result 616, Processing Time 0.027 seconds

Visualization of Temperature Distribution Deep Inside the Agar Gel Tissue Phantom Heated Using Moxibustion and 1064 nm Infrared Laser (쑥뜸과 1064 nm 파장의 근적외선 레이저로 가열된 아가젤 조직 팬텀 심부의 온도분포 가시화)

  • Cho, Ji-Yong;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.54-59
    • /
    • 2010
  • A laser moxibustion therapy device having effect similar to that of traditional moxibustion is being developed using 1064 nm infrared laser. The therapy device allows direct interaction of laser light with the tissue rendering temperature distribution both on the skin surface and deep under the skin. We made a device that could measure temperature of deep under the surface of agar gel tissue phantom using thermocouples. A thermal imaging camera was used to verify results from the temperature measurement device. We compared the characteristics of heat transfer inside the tissue phantom during moxibustion and laser irradiation. The temperature distribution measured by thermocouples was found to be similar to that of distribution given by thermal imaging camera.

An Implementation of Radiologic Imaging Device of Remote Emergency Medical System (원격응급시스템의 방사선 영상장치 구현)

  • Cho, Dong-Heon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2007
  • The radiologic imaging device was implemented. It can be installed in an ambulance or used when an accident happens. After an equipment which generates X-ray generating unit with a tube in DC 12[V] had been made, a trait experiment using an oscilloscope was made. An experiment was carried out where the generated X-ray was saved as a form of a file using a digital detector. In this experiment, as a result of generating X-ray and detecting it using a digital detector, 1.67[MB]-, jpg- radical rays information could be saved. One distinct advantage of the developed radiologic imaging device is the fact that we can efficiently deal with emergency cases too far from the hospital, difficult to diagnose but treat simultaneously. By using the radiologic imaging device at the urgent scene of an accident or in a moving ambulance, we can provide the patient's X-ray information with the emergency medical specialist who is in the emergent medical center and have the patients prescribed and treated appropriately. As a result the developed emergency medical treatment can be expected.

Validation of a low-cost portable 3-dimensional face scanner

  • Liu, Catherine;Artopoulos, Andreas
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • Purpose: The goal of this study was to assess the accuracy and reliability of a low-cost portable scanner (Scanify) for imaging facial casts compared to a previously validated portable digital stereophotogrammetry device (Vectra H1). This in vitro study was performed using 2 facial casts obtained by recording impressions of the authors, at King's College London Academic Centre of Reconstructive Science. Materials and Methods: The casts were marked with anthropometric landmarks, then digitised using Scanify and Vectra H1. Computed tomography (CT) scans of the same casts were performed to verify the validation of Vectra H1. The 3-dimensional (3D) images acquired with each device were compared using linear measurements and 3D surface analysis software. Results: Overall, 91% of the linear Scanify measurements were within 1 mm of the corresponding reference values. The mean overall surface difference between the Scanify and Vectra images was <0.3mm. Significant differences were detected in depth measurements. Merging multiple Scanify images produced significantly greater registration error. Conclusion: Scanify is a very low-cost device that could have clinical applications for facial imaging if imaging errors could be corrected by a future software update or hardware revision.

Development of portable digital radiography system with device for sensing X-ray source-detector angle and its application in chest imaging (엑스선촬영 각도를 측정할 수 있는 장치 개발과 흉부 X선 영상촬영에서의 적용)

  • Kim, Tae-Hoon;Heo, Dong-Woon;Ryu, Jong-Hyun;Jeong, Chang-Won;Jun, Hong Young;Kim, Kyu Gyeom;Hong, Jee Min;Jang, Mi Yeon;Kim, Dae Won;Yoon, Kwon-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.235-238
    • /
    • 2017
  • This study was to develop a portable digital radiography (PDR) system with a function measuring the X-ray source-with-detector angle (SDA) and to evaluate the imaging performance for the diagnosis of chest imaging. The SDA device consisted of an Arduino, an accelerometer and gyro sensor, and a Bluetooth module. According to different angle degrees, five anatomical landmarks on chest images were assessed using a 5-point scale. Mean signal-to-noise ratio and contrast-to-noise ratio were 182.47 and 141.43. Spatial resolution (10% MTF) and entrance surface dose were 3.17 lp/mm ($157{\mu}m$) and 0.266mGy. The angle values of SDA device were not significant difference as compared to those of the digital angle meter. In chest imaging, SNR and CNR values were not significantly different according to different angle degrees (repeated-measures ANOVA, p>0.05). The visibility scores of the border of heart, 5th rib and scapula showed significant differences according to different angles (rmANOVA, p<0.05), whereas the scores of the clavicle and 1st rib were not significant. It is noticeable that the increase in SDA degree was consistent with the increase of visibility score. Our PDR with SDA device would be useful to be applicable to clinical radiography setting according to the standard radiography guideline at various fields.

  • PDF

Demonstration of an ultrasonic imaging system for molten lead

  • Jonathan Hawes;Jordan Knapp;Robert Burrows;Robert Montague;Paul Wilcox;Hual-Te Chien;Jeff Arndt;Steve Walters
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1460-1471
    • /
    • 2024
  • 2D and 3D ultrasonic imaging has so far not been demonstrated in pure molten lead in the open literature. In this study the development of such an ultrasonic device for imaging is outlined and results from testing at 380 ℃ in lead are presented. The main difficulties were found to be achieving then maintaining suitable wetting while ensuring suitable durability of the device, both due to the harsh nature of molten lead and the elevated temperatures. The successful detection and imaging (2D and 3D), of differently shaped targets, where the features were above the size of the transmitted ultrasound beam was demonstrated.

Design and Implementation of Bioluminescence Signal Analysis Tool

  • Jeong, Hye-Jin;Lee, Byeong-Il;Hwang, Hae-Gil;Song, Soo-Min;Min, Jung-Joon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1580-1587
    • /
    • 2006
  • The term molecular imaging can be broadly defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Optical imaging that has highly reproducibility and repetition used in molecular imaging research. In the bioluminescence imaging, animals carrying the luciferase gene are imaged with a cooled CCD(Charge-Coupled Device) camera to pick up the small number of photons transmitted through tissues. Molecular imaging analysis will allow us to observe the incipience and progression of the disease. But hardware device for molecular imaging and software for molecular image analysis were dependent on imports. In this paper, we suggest image processing methods and designed software for bioluminescence signal analysis. And we demonstrated high correlation(r=0.99) between our software's photon counts and commercial software's photon counts. ROI function and processing functions were accomplished without error. This study have the importance of the development software for bioluminescence image processing and analysis. And this study built the foundations for creative development of analysis methods. We expected this study lead the development of image technology.

  • PDF

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

In Situ Fluorescence Optical Detection Using a Digital Micromirror Device (DMD) for 3D Cell-based Assays

  • Choi, Jong-Ryul;Kim, Kyujung;Kim, Donghyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • We have developed a fluorescence optical detection system using a digital micromirror device (DMD) for monitoring 3D cell culture matrices in situ. Full 3D imaging with fast scanning speed was implemented by the combined action of a DMD and a motorized stage. Imaging results with fluorescent microbeads measure the minimum axial resolution of the system as $6.3{\mu}m$, while full 1-mm scanning through 3D alginate-based matrix was demonstrated. For cell imaging, improved images were obtained by removing background fluorescence although the scanning distance was reduced because of low intracellular fluorescence efficiency. The system is expected to be useful to study various dynamics and behaviors of 3-dimensionally cultured cells in microfluidic systems.

Manhole Cover Detection from Natural Scene Based on Imaging Environment Perception

  • Liu, Haoting;Yan, Beibei;Wang, Wei;Li, Xin;Guo, Zhenhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5095-5111
    • /
    • 2019
  • A multi-rotor Unmanned Aerial Vehicle (UAV) system is developed to solve the manhole cover detection problem for the infrastructure maintenance in the suburbs of big city. The visible light sensor is employed to collect the ground image data and a series of image processing and machine learning methods are used to detect the manhole cover. First, the image enhancement technique is employed to improve the imaging effect of visible light camera. An imaging environment perception method is used to increase the computation robustness: the blind Image Quality Evaluation Metrics (IQEMs) are used to percept the imaging environment and select the images which have a high imaging definition for the following computation. Because of its excellent processing effect the adaptive Multiple Scale Retinex (MSR) is used to enhance the imaging quality. Second, the Single Shot multi-box Detector (SSD) method is utilized to identify the manhole cover for its stable processing effect. Third, the spatial coordinate of manhole cover is also estimated from the ground image. The practical applications have verified the outdoor environment adaptability of proposed algorithm and the target detection correctness of proposed system. The detection accuracy can reach 99% and the positioning accuracy is about 0.7 meters.

Measurement of Skin Dose Distribution for the Mobile X-ray Unit Collimator Shielding Device (이동형 X선 장치 차폐도구 제작을 통한 표면선량 분포 측정)

  • Hong, Sun-Suk;Kim, Deuk-Yong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.5-8
    • /
    • 2010
  • Opened a court in February 10, 2006, a rule of safety management of the diagnosis radiation system was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this rule is to minimize the risk of being exposed to radiation during the process of handling X-ray. For this reason, we manufactured shielding device of mobile X-ray unit collimator for diminution of skin dose. Shielding device is made to a thickness of Pb 0.375mm. For portable chest radiography, we measured skin dose 50cm from center ray to 200cm at intervals of 20cm by Unfors Xi detector. As a result, a rule of safety management of the diagnosis radiation system has been strengthened. But there are exceptions, such as ER, OR, ICU to this rule. So shielding device could contribute to protect unnecessary radiation exposure and improve nation's health.

  • PDF