• Title/Summary/Keyword: images of scientists

Search Result 503, Processing Time 0.023 seconds

Locally Linear Embedding for Face Recognition with Simultaneous Diagonalization (얼굴 인식을 위한 연립 대각화와 국부 선형 임베딩)

  • Kim, Eun-Sol;Noh, Yung-Kyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.235-241
    • /
    • 2015
  • Locally linear embedding (LLE) [1] is a type of manifold algorithms, which preserves inner product value between high-dimensional data when embedding the high-dimensional data to low-dimensional space. LLE closely embeds data points on the same subspace in low-dimensional space, because the data points have significant inner product values. On the other hand, if the data points are located orthogonal to each other, these are separately embedded in low-dimensional space, even though they are in close proximity to each other in high-dimensional space. Meanwhile, it is well known that the facial images of the same person under varying illumination lie in a low-dimensional linear subspace [2]. In this study, we suggest an improved LLE method for face recognition problem. The method maximizes the characteristic of LLE, which embeds the data points totally separately when they are located orthogonal to each other. To accomplish this, all of the subspaces made by each class are forced to locate orthogonally. To make all of the subspaces orthogonal, the simultaneous Diagonalization (SD) technique was applied. From experimental results, the suggested method is shown to dramatically improve the embedding results and classification performance.

LASPI: Hardware friendly LArge-scale stereo matching using Support Point Interpolation (LASPI: 지원점 보간법을 이용한 H/W 구현에 용이한 스테레오 매칭 방법)

  • Park, Sanghyun;Ghimire, Deepak;Kim, Jung-guk;Han, Youngki
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.932-945
    • /
    • 2017
  • In this paper, a new hardware and software architecture for a stereo vision processing system including rectification, disparity estimation, and visualization was developed. The developed method, named LArge scale stereo matching method using Support Point Interpolation (LASPI), shows excellence in real-time processing for obtaining dense disparity maps from high quality image regions that contain high density support points. In the real-time processing of high definition (HD) images, LASPI does not degrade the quality level of disparity maps compared to existing stereo-matching methods such as Efficient LArge-scale Stereo matching (ELAS). LASPI has been designed to meet a high frame-rate, accurate distance resolution performance, and a low resource usage even in a limited resource environment. These characteristics enable LASPI to be deployed to safety-critical applications such as an obstacle recognition system and distance detection system for autonomous vehicles. A Field Programmable Gate Array (FPGA) for the LASPI algorithm has been implemented in order to support parallel processing and 4-stage pipelining. From various experiments, it was verified that the developed FPGA system (Xilinx Virtex-7 FPGA, 148.5MHz Clock) is capable of processing 30 HD ($1280{\times}720pixels$) frames per second in real-time while it generates disparity maps that are applicable to real vehicles.

Partial Denoising Boundary Image Matching Based on Time-Series Data (시계열 데이터 기반의 부분 노이즈 제거 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Lee, Sanghoon;Moon, Yang-Sae
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.943-957
    • /
    • 2014
  • Removing noise, called denoising, is an essential factor for the more intuitive and more accurate results in boundary image matching. This paper deals with a partial denoising problem that tries to allow a limited amount of partial noise embedded in boundary images. To solve this problem, we first define partial denoising time-series which can be generated from an original image time-series by removing a variety of partial noises and propose an efficient mechanism that quickly obtains those partial denoising time-series in the time-series domain rather than the image domain. We next present the partial denoising distance, which is the minimum distance from a query time-series to all possible partial denoising time-series generated from a data time-series, and we use this partial denoising distance as a similarity measure in boundary image matching. Using the partial denoising distance, however, incurs a severe computational overhead since there are a large number of partial denoising time-series to be considered. To solve this problem, we derive a tight lower bound for the partial denoising distance and formally prove its correctness. We also propose range and k-NN search algorithms exploiting the partial denoising distance in boundary image matching. Through extensive experiments, we finally show that our lower bound-based approach improves search performance by up to an order of magnitude in partial denoising-based boundary image matching.

Content-Based Image Retrieval using Third Order Color Object Relation (3차 칼라 객체 관계에 의한 내용 기반 영상 검색)

  • Kwon, Hee-Yong;Choi, Je-Woo;Lee, In-Heang;Cho, Dong-Sub;Hwang, Hee-Yeung
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • In this paper, we propose a criteria which can be applied to classify conventional color feature based Content Based Image Retrieval (CBIR) methods with its application areas, and a new image retrieval method which can represent sufficient spatial information in the image and is powerful in invariant searching to translation, rotation and enlargement transform. As the conventional color feature based CBIR methods can not sufficiently include the spatial information in the image, in general, they have drawbacks, which are weak to the translation or rotation, enlargement transform. To solve it, they have represented the spatial information by partitioning the image. Retrieval efficiency, however, is decreased rapidly as increasing the number of the feature vectors. We classify conventional methods to ones using 1st order relations and ones using 2nd order relations as their color object relation, and propose a new method using 3rd order relation of color objects which is good for the translation, rotation and enlargement transform. It makes quantized 24 buckets and selects 3 high scored histogram buckets and calculates 3 mean positions of pixels in 3 buckets and 3 angles. Then, it uses them as feature vectors of a given image. Experiments show that the proposed method is especially good at enlarged images and effective for its small calculation.

  • PDF

Implementation of a Photo-Input Game Interface Using Image Search (이미지 검색을 이용한 사진입력 게임 인터페이스 구현)

  • Lee, Taeho;Han, Jaesun;Park, Heemin
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.658-669
    • /
    • 2015
  • The paradigm of game development changes with technological trends. If the system can analyze and determine undefined inputs, users' input choices are not restricted. Therefore, game scenarios can have multifarious flows depending upon the user's input data. In this paper, we propose a method of including an output plan in the game system that is based on the user's input but is not restricted to predefined choices. We have implemented an experimental game on the Android platform by combining network communication and APIs. The game interface works as follows: first, the user's input data is transmitted to the server using HTTP protocol; then, the server carries out an analysis on the input data; and finally, the server returns the decision result to the game device. The game can provide users a scenario that corresponds to the decision results. In this paper, we used an image file for the user's input data format. The server calculates similarities between the user's image file and reference images obtained from the Naver Image Search API and then returns determination results. We have confirmed the value of integrating the game development framework with other computing technologies demonstrating the potential of the proposed methods for application to various future game interfaces.

Fast Fingerprint Alignment Method and Weighted Feature Vector Extraction Method in Filterbank-Based Fingerprint Matching (필터뱅크 기반 지문정합에서 빠른 지문 정렬 방법 및 가중치를 부여한 특징 벡터 추출 방법)

  • 정석재;김동윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 2004
  • Minutiae-based fingerprint identification systems use minutiae points, which cannot completely characterize local ridge structures. Further, this method requires many methods for matching two fingerprint images containing different number of minutiae points. Therefore, to represent the fired length information for one fingerprint image, the filterbank-based method was proposed as an alternative to minutiae-based fingerprint representation. However, it has two shortcomings. One shortcoming is that similar feature vectors are extracted from the different fingerprints which have the same fingerprint type. Another shortcoming is that this method has overload to reduce the rotation error in the fingerprint image acquisition. In this paper, we propose the minutia-weighted feature vector extraction method that gives more weight in extracting feature value, if the region has minutiae points. Also, we Propose new fingerprint alignment method that uses the average local orientations around the reference point. These methods improve the fingerprint system's Performance and speed, respectively. Experimental results indicate that the proposed methods can reduce the FRR of the filterbank-based fingerprint matcher by approximately 0.524% at a FAR of 0.967%, and improve the matching performance by 5% in ERR. The system speed is over 1.28 times faster.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Real-Time Stereoscopic Visualization of Very Large Volume Data on CAVE (CAVE상에서의 방대한 볼륨 데이타의 실시간 입체 영상 가시화)

  • 임무진;이중연;조민수;이상산;임인성
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.679-691
    • /
    • 2002
  • Volume visualization is an important subarea of scientific visualization, and is concerned with techniques that are effectively used in generating meaningful and visual information from abstract and complex volume datasets, defined in three- or higher-dimensional space. It has been increasingly important in various fields including meteorology, medical science, and computational fluid dynamics, and so on. On the other hand, virtual reality is a research field focusing on various techniques that aid gaining experiences in virtual worlds with visual, auditory and tactile senses. In this paper, we have developed a visualization system for CAVE, an immersive 3D virtual environment system, which generates stereoscopic images from huge human volume datasets in real-time using an improved volume visualization technique. In order to complement the 3D texture-mapping based volume rendering methods, that easily slow down as data sizes increase, our system utilizes an image-based rendering technique to guarantee real-time performance. The system has been designed to offer a variety of user interface functionality for effective visualization. In this article, we present detailed description on our real-time stereoscopic visualization system, and show how the Visible Korean Human dataset is effectively visualized on CAVE.

A H.264 based Selective Fine Granular Scalable Coding Scheme (H.264 기반 선택적인 미세입자 스케일러블 코딩 방법)

  • 박광훈;유원혁;김규헌
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.309-318
    • /
    • 2004
  • This paper proposes the H.264-based selective fine granular scalable (FGS) coding scheme that selectively uses the temporal prediction data in the enhancement layer. The base layer of the proposed scheme is basically coded by the H.264 (MPEG-4 Part 10 AVC) visual coding scheme that is the state-of-art in codig efficiency. The enhancement layer is basically coded by the same bitplane-based algorithm of the MPEG-4 (Part 2) fine granular scalable coding scheme. In this paper, we introduce a new algorithm that uses the temproal prediction mechanism inside the enhancement layer and the effective selection mechanism to decide whether the temporally-predicted data would be sent to the decoder or not. Whenever applying the temporal prediction inside the enhancement layer, the temporal redundancies may be effectively reduced, however the drift problem would be severly occurred especially at the low bitrate transmission, due to the mismatch bewteen the encoder's and decoder's reference frame images. Proposed algorithm selectively uses the temporal-prediction data inside the enhancement layer only in case those data could siginificantly reduce the temporal redundancies, to minimize the drift error and thus to improve the overall coding efficiency. Simulation results, based on several test image sequences, show that the proposed scheme has 1∼3 dB higher coding efficiency than the H.264-based FGS coding scheme, even 3∼5 dB higher coding efficiency than the MPEG-4 FGS international standard.

A Study on the Improvement of Skin-affinity and Spreadability in the Pressed Powder using Air Jet Mill Process and Mono-dispersed PMMA (Air Jet Mill 공법과 PMMA의 단분산성이 프레스드 파우더의 밀착성 및 발림성 향상에 대한 연구)

  • Song, Sang Hoon;Hong, Kyong Woo;Han, Jong Seob;Kim, Kyong Seob;Park, Sun Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • The key quality attributes of the pressed powder, one of base makeup products, are skin-affinity and spreadability. In general, there was a limit to meet skin-affinity and spreadability simultaneously, which are opposite attributes each other. In this study, air jet mill process was tried to satisfy two main properties. Skin-affinity was improved by a wet coating of sericite with a mixture of lauroyl lysine (LL) and sodium cocoyl glutamate (SCG). The application of mono-dispersed polymethyl methacrylate (PMMA) and diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer (DDVDDSC) improved both qualities. Air jet mill process has been mainly applied in the pharmaceutical and food industries, and is a method used for processing powder materials in cosmetic field. In this study, we were able to complete makeup cosmetics with an optimum particle size $6.8{\mu}m$ by combining the air jet mill process at the manufacturing stage. It was confirmed that the Ti element was uniformly distributed throughout the cosmetics by EDS mapping, and that the corners of the tabular grains were rounded by SEM analysis. It is considered that this can provide an effect of improving the spreadability when the cosmetic is applied to the skin by using a makeup tool. LL with excellent skin compatibility and SCG derived from coconut with little skin irritation were wet coated to further enhance the adhesion of sericite. SEM images were analyzed to evaluate effect of the dispersion and uniformity of PMMA on spreadability. With the spherical shapes of similar size, it was found that the spreading effect was further increased when the distribution was homogeneously mono-dispersed. The dispersion and spreadability of PMMA were confirmed by measuring the kinetic friction and optimal content was determined. The silicone rubber powder, DDVDDSC, was confirmed by evaluating the hardness, spreading value, and drop test. Finally, it was found that the dispersion of PMMA and silicone rubber powder affected spreadability. Such makeup cosmetics have excellent stability in drop test while having appropriate hardness, and good stability over time. Taken together, it is concluded that air jet mill process can be utilized as a method to improve skin-affinity and spreadability of the pressed powder.