• Title/Summary/Keyword: imagery

Search Result 1,921, Processing Time 0.021 seconds

COMPARISON OF RED TIDE DETECTION BY A NEW RED TIDE INDEX METHOD AND STANDARD BIO-OPTICAL ALGORITHM APPLIED TO SEA WIFS IMAGERY IN OPTICALLY COMPLEX CASE-II WATERS

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.445-449
    • /
    • 2005
  • Various methods to detect the phytoplankton/red tide blooms in the oceanic waters have been developed and tested on satellite ocean color imagery since the last two and half decades, but accurate detection of blooms with these methods remains challenging in optically complex turbid waters, mainly because of the eventual interference of absorbing and scattering properties of dissolved organic and particulate inorganic matters with these methods. The present study introduces a new method called Red tide Index (Rl), providing indices which behave as a good measure of detecting red tide algal blooms in high scattering and absorbing waters of the Korean South Sea and Yellow Sea. The effectiveness of this method in identifying and locating red tides is compared with the standard Ocean Chlorophyll 4 (OC4) bio-optical algorithm applied to SeaWiFS ocean imagery, acquired during two bloom episodes on 27 March 2002 and 28 September 2003. The result revealed that OC4 bio-optical algorithm falsely identifies red tide blooms in areas abundance in colored dissolved organic and particulate inorganic matter constituents associated with coastal areas, estuaries and river mouths, whereas red tide index provides improved capability of detecting, predicting and monitoring of these blooms in both clear and turbid waters.

  • PDF

ATMOSPHERIC AEROSOL DETECTION AND ITS REMOVEAL FOR SATELLITE DATA

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.598-601
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

  • PDF

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery (운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.

Analyses on Standard Formats of Spatial Imagery Information (공간영상정보 포맷 분석 및 표준화 방향)

  • 임정호;사공호상;권용대
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.31-50
    • /
    • 2001
  • This study has analyzed GeoTIFF, SDTS, HDF, and BIIF as the representative formats of spatial imagery information with two parts. First is to compare 4 formats with each other based on 4 comparison criteria (extensibility, interchangeability, current widespread use, long-term stability) by analyzing specification of each format. Second is to estimate current use and interchangeability of 4 formats between 5 commercial softwares used commonly. The result shows that GeoTIFF is currently better than three other formats. However, the more various spatial imagery information are and the larger capacity they have, the more formats are developed and updated, which means that only one format should not be considered as a standard format continuously. It is better to provide a standard format proper to the time through continuous research and sustainable policy support should be followed.

  • PDF

The Correction of Systemetic Error of Three Dimensional Positioning using SPOT Imagery (SPOT 영상(映像)을 이용(利用)한 3차원(次元) 위치결정(位置決定)에 있어서 정오차(定誤差) 보정(補正)에 관한 연구(研究))

  • Yeu, Bock Mo;Jung, Young Dong;Lee, Hyun Jik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.121-128
    • /
    • 1992
  • This study aims to define the algorithm for self-calibration bundle adjustment with additional parameters, which is fit for the correction systematic errors in the SPOT satellite imagery, and to present a suitable term of additional parameters for the data form of SPOT satellite imagrery. As a result, an algorithm of self-calibration bundle adjustment for SPOT satellite imagery was settles, and the computer program was developed. Also, the suitable term of additional parameters to correct the systematic errors for each data form was defined through examination for determination effect of additional parameters and significance test. The algorithm of self-calibration bundle adjustment for SPOT satellite imagery according to this study could improve the accuracy of positioning.

  • PDF

The Impacts of Decomposition Levels in Wavelet Transform on Anomaly Detection from Hyperspectral Imagery

  • Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.623-632
    • /
    • 2012
  • In this paper, we analyzed the effect of wavelet decomposition levels in feature extraction for anomaly detection from hyperspectral imagery. After wavelet analysis, anomaly detection was experimentally performed using the RX detector algorithm to analyze the detecting capabilities. From the experiment for anomaly detection using CASI imagery, the characteristics of extracted features and the changes of their patterns showed that radiance curves were simplified as wavelet transform progresses and H bands did not show significant differences between target anomaly and background in the previous levels. The results of anomaly detection and their ROC curves showed the best performance when using the appropriate sub-band decided from the visual interpretation of wavelet analysis which was L band at the decomposition level where the overall shape of profile was preserved. The results of this study would be used as fundamental information or guidelines when applying wavelet transform to feature extraction and selection from hyperspectral imagery. However, further researches for various anomaly targets and the quantitative selection of optimal decomposition levels are needed for generalization.

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

REGISTRATION OF IKONOS-2 GEO-LEVEL SATELLITE IMAGERY USING ALS DATA;BY USING LINEAR FEATURES AS REGISTRATION PRIMITIVES

  • Lee, Jae-Bin;Song, Woo-Seok;Lee, Chang-No;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.14-17
    • /
    • 2007
  • To make use of surveying data obtained from different sensors and different techniques in a common reference frame, it is a pre-requite step to register them in a common coordinate system. For this purpose, we have developed a methodology to register IKONOS-2 Satellite Imagery using ALS data. To achieve this, conjugate features from these data should be extracted in advance. In the study, linear features are chosen as conjugate features because they can be accurately extracted from man-made structures in urban area, and more easily than point features from ALS data. Then, observation equations are established from similarity measurements of the extracted features. During the process, considering the characteristics of systematic errors in IKONOS-2 satellite imagery, the transformation function were selected and used. In addition, we also analyzed how the number of linear features and their spatial distribution used as control features affect the accuracy of registration. Finally, the results were evaluated statistically and the results clearly demonstrated that the proposed algorithms are appropriate to register these data.

  • PDF

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF