• Title/Summary/Keyword: image vector

Search Result 1,580, Processing Time 0.023 seconds

A Classifier for Textured Images Based on Matrix Feature (행렬 속성을 이용하는 질감 영상 분별기)

  • 김준철;이준환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.91-102
    • /
    • 1994
  • For the analysis of textured image, it requires large storage space and computation time to calculate the matrix features such as SGLDM(Spatial Gray Level Dependence Matrix). NGLDM(Neighboring Gray Level Dependence Matrix). NSGLDM(Neighboring Spatial Gray Level Dependence Matrix) and GLRLM(Gray Level Run Length Matrix). In spite of a large amount of information that each matrix contains, a set of several correlated scalar features calculated from the matrix is not sufficient to approximate it. In this paper, we propose a new classifier for textured images based on these matrices in which the projected vectors of each matrix on the meaningful directions are used as features. In the proposed method, an unknown image is classified to the class of a known image that gives the maximum similarity between the projected model vector from the known image and the vector from the unknown image. In the experiment to classify images of agricultural products, the proposed method shows good performance as much as 85-95% of correct classification ratio.

  • PDF

Development of an Image Tracking System Using an USB Camera on an Embedded System (USB Camera를 이용한 이미지 트래킹을 위한 Pan/Tilt 제어용 Embedded System 개발)

  • Kim, Hie-Sik;Nam, Chul;Ayurzana, Odgera;Ha, Kwan-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.182-184
    • /
    • 2005
  • An embedded system has been applied to many fields including households and industrial sites. The embedded system is implemented fur image tracking in security area. This system supports a fixed IP far the reliable server operation on TCP/IP networks. A real time video image on the is analyzed to detect a certain invader who jumped into the observed area. The digital camera is connected at the USB host port of the target board. The video images from the video camera is continuously analyzed and displayed at the Linux web-server. The moving vector of the invaders on the continuous image frames is calculated and then it sends the calculated pan/tilt movement. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The experiment result showed tracking performance by the moving part speed of 10 to 150 pixels/sec.

  • PDF

IMAGE COMPRESSION USING VECTOR QUANTIZATION

  • Pantsaena, Nopprat;Sangworasil, M.;Nantajiwakornchai, C.;Phanprasit, T.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.979-982
    • /
    • 2002
  • Compressing image data by using Vector Quantization (VQ)[1]-[3]will compare Training Vectors with Codebook. The result is an index of position with minimum distortion. The implementing Random Codebook will reduce the image quality. This research presents the Splitting solution [4],[5]to implement the Codebook, which improves the image quality[6]by the average Training Vectors, then splits the average result to Codebook that has minimum distortion. The result from this presentation will give the better quality of the image than using Random Codebook.

  • PDF

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

Image VQ Using Two-Stage Self-Organizing Feature Map in the Transform Domain (2 단 Self-Organizing Feature Map 을 사용한 변환 영역 영상의 벡터 양자화)

  • 이동학;김영환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.57-65
    • /
    • 1995
  • This paper presents a new classified vector quantization (VQ) technique using a neural network model in the transform domain. Prior to designing a codebook, the proposed approach extracts class features from a set of images using self-organizing feature map (SOFM) that has the pattern recognition characteristics and the same as VQ objective. Since we extract the class features from the training images unlike previous approaches, the reconstructed image quality is improved. Moreover, exploiting the adaptivity of the neural network model makes our approach be easily applied to designing a new vector quantizer when the processed image characteristics are changed. After the generalized BFOS algorithm allocates the given bits to each class, codebooks of each class are also generated using SOFM for the maximal reconstructed image quality. In experimental results using monochromatic images, we obtained a good visual quality in the reconstructed image. Also, PSNR is comparable to that of other classified VQ technique and is higher than that of JPEG baseline system.

  • PDF

Detection of Edges in Color Images

  • Ganchimeg, Ganbold;Turbat, Renchin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.345-352
    • /
    • 2014
  • Edge detection considers the important technical details of digital image processing. Many edge detection operators already perform edge detection in digital color imaging. In this study, the edge of many real color images that represent the type of digital image was detected using a new operator in the least square approximation method, which is a type of numerical method. The Linear Fitting algorithm is computationally more expensive compared to the Canny, LoG, Sobel, Prewitt, HIS, Fuzzy, Parametric, Synthetic and Vector methods, and Robert' operators. The results showed that the new method can detect an edge in a digital color image with high efficiency compared to standard methods used for edge detection. In addition, the suggested operator is very useful for detecting the edge in a digital color image.

A Novel Model for Smart Breast Cancer Detection in Thermogram Images

  • Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10573-10576
    • /
    • 2015
  • Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.

A design of Direct Memory Access For H.264 Encoder (H.264 Encoder용 Direct Memory Access (DMA) 설계)

  • Jung, Il-Sub;Suh, Ki-Bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.91-94
    • /
    • 2008
  • The designed module save to memory after received Image from CMOS image Sensor(CIS), and set a motion of Encoder module, read from memory per one macroblock each original Image and reference image then supply or save. the time required 470 cycle when processed one macroblock. For designed construct verification, I develop reference Encoder C like JM 9.4 and I proved this module with test vector which achieved from reference encoder C.

  • PDF

Spatio-Temporal Image Segmentation Using Hierarchical Structure Based on Binary Split Algorithm (이진분열 알고리즘에 기반한 계층적 구조의 시공간 영상 분할)

  • 박영식;송근원;정의윤;한규필;하영호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.145-149
    • /
    • 1997
  • In this paper, a hierarchical spatio-temporal image segmentation method based on binary split algorithm is proposed. Intensity and displacement vector at each pixel are used for image segmentation. The displacement vectors between two image frames which skip over one or several frames can be approximated by accumulating of the velocity vectors calculated from optical flow between two successive frames when the time interval between the two image frames is short enough or the motion is slow. The pixels whose displacement vector and intensity are ambiguous are precisely decided by the modified watershed algorithm using the proposed priority measure. In the experiment, the region of moving object is precisely segmented.

  • PDF

Appearance-based Robot Visual Servo via a Wavelet Neural Network

  • Zhao, Qingjie;Sun, Zengqi;Sun, Fuchun;Zhu, Jihong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.607-612
    • /
    • 2008
  • This paper proposes a robot visual servo approach based on image appearance and a wavelet function neural network. The inputs of the wavelet neural network are changes of image features or the elements of image appearance vector, and the outputs are changes of robot joint angles. Image appearance vector is calculated by using eigen subspace transform algorithm. The proposed approach does not need a priori knowledge of the robot kinematics, hand-eye geometry and camera models. The experiment results on a real robot system show that the proposed method is practical and simple.