• Title/Summary/Keyword: image uniformity

Search Result 263, Processing Time 0.032 seconds

Scene-based non-uniformity correction for thermal imaging system using microscanning effect (미세주사효과를 이용한 배경기반 열영상 불균일 보정 기법)

  • Song, In-Seob;Ra, Sung-Woong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.11-16
    • /
    • 2000
  • In this paper, a real-time implementation of scene-based non-uniformity correction by digital technique is proposed for microscan-mode staring infrared cameras. Most scene-based non-uniformity correction algorithms, without sensor motion, can not be applied to stationary scenes because of image blurring and fading. Using microscanning effect, coupled with a modified version of Scribner's algorithm, the proposed technique can correct the artifacts and non-uniformities in real time Computer simulations and hardware experiments demonstrate substantial Improvement of image qualities in stationary as well as moving scenes.

  • PDF

A Non-uniform Correction Algorithm Based on Scene Nonlinear Filtering Residual Estimation

  • Hongfei Song;Kehang Zhang;Wen Tan;Fei Guo;Xinren Zhang;Wenxiao Cao
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.408-418
    • /
    • 2023
  • Due to the technological limitations of infrared thermography, infrared focal plane array (IFPA) imaging exhibits stripe non-uniformity, which is typically fixed pattern noise that changes over time and temperature on top of existing non-uniformities. This paper proposes a stripe non-uniformity correction algorithm based on scene-adaptive nonlinear filtering. The algorithm first uses a nonlinear filter to remove single-column non-uniformities and calculates the actual residual with respect to the original image. Then, the current residual is obtained by using the predicted residual from the previous frame and the actual residual. Finally, we adaptively calculate the gain and bias coefficients according to global motion parameters to reduce artifacts. Experimental results show that the proposed algorithm protects image edges to a certain extent, converges fast, has high quality, and effectively removes column stripes and non-uniform random noise compared to other adaptive correction algorithms.

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

  • Kim, Ho Chul;Kim, Hee-Joung;Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.776-780
    • /
    • 2017
  • To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

Velocity Measurements of Slurry Flows in CMP Process by Particle Image Velocimetry (Particle Image Velocimetry 기법을 이용한 CMP 공정의 Slurry유동 분석)

  • Kim Mun-Ki;Yoon Young-Bin;Koh Young-Ho;Hong Chang-Gi;Shin Sang-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.59-67
    • /
    • 2006
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some previous works show that RR is determined by production of pressure and velocity and NU is also largely affected by velocity of flowfield during CMP. This study is about the direct measurement of velocity of slurry during CMP and whole flowfield upon the non-groove pad by Particle Image Velocimetry(PIV). Typical PIV system is modified adequately for inspecting CMP and slurry flowfield is measured by changing both pad rpm and carrier rpm. We performed measurement with giving some variation in the kinds of pad. The results show that the flowfield is majorly determined not by Carrier but by Pad in the case of non-groove pad.

Calibration of Water Velocity Profile in Circular Water Channel Using Particle Image Velocimetry (PIV를 이용한 회류수조의 유속 분포 교정에 관한 연구)

  • Suh, Sung-Bu;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.23-27
    • /
    • 2011
  • This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.

Metal pad Discolored Image Classification Algorithm using Geometric Texture Information (기하학적 텍스쳐 정보를 이용한 금속 패드 변색영상 분류 알고리즘)

  • Cui, Xue Nan;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.469-475
    • /
    • 2010
  • This paper presents a method of classifying discolored defects of metal pads using geometric texture for AFVI (Automated Final Vision Inspection) systems. In PCB manufacturing process, the metal pads on PCB can be oxidized and discolored partly due to various environmental factors. Nowadays the discolored defects are manually detected and rejected from the process. This paper proposes an efficient geometric texture feature, SUTF (Symmetry and Uniformity Texture Feature) based on the symmetric and uniform textural characteristics of the surface of circular metal pads for automating AFVI systems. In practical experiments with real samples acquired from a production line, 30 discolored images and 1232 roughness images are tested. The experimental results demonstrate that the proposed method using SUTFs provides better performance compared to Gabor feature with 0% FNR (False Negative Rate) and 1.46% FPR (False Positive Rate). The performance of the proposed method shows its applicability in the real manufacturing systems.

Performance Evaluation of Aprons according to Lead Equivalent and Form Types (방사선 방어용 앞치마의 납당량, 형태에 따른 성능 평가)

  • Kim, Ki-Won;Choi, Sung-Hyun;Kim, Ki-Yeol;Lee, Ik-Pyo;Hwang, Sun-Gwang;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.219-225
    • /
    • 2016
  • The apron is one of the essential protectors to reduce the exposure dose of radiological technologists. This study is to provide a guideline for purchasing the aprons with excellent performance and to help reducing the exposure dose by measuring the shielding ration and uniformity of aprons according to lead equivalent and form types. The shielding ratio of aprons were measured by using radiation generator and dosimeter. Exposure conditions were 81 kVp, 25 mAs, source to image receptor distance (SID) 100 cm and field of view (FOV) $17^{{\prime}{\prime}}{\times}17^{{\prime}{\prime}}$. Exposure areas for front type and around type aprons were divided into 9 areas and for 2 pieces type aprons were divided into 3 areas of top and 4 areas of skirt. The uniformity of aprons were measured by using fluoroscopy and Image J. The 4 regions of interest (ROI) were set into acquired images and measured uniformity by measuring the standard deviation of pixel intensity in ROIs. In continuous shielding ration measurement of aprons according to exposure area, there was not statistical significance (P>0.05). In ANOVA test of aprons, there was statistical significance (P<0.01). In the results of sheilding ratio, although the aprons had equal lead equivalent, there were difference in shielding ratio from 83.59% to 98.15%. In the results of uniformity, the front type aprons with equal lead equivalent indicated the similar uniformity. However, the around type and 2 pieces type apron with equal lead equivalent indicated the different uniformity each other, from 1.8 to 22.2. If the performance evaluation in this study were conducted regularly before and after purchase the aprons, the exposure does to patients and radiological technologists could be reduced.

KOMPSAT-2 NON-UNIFORMITY CORRECTION ALGORITHM (다목적 실용위성2호의 NON-UNIFORMITY CORRECTION 알고리즘)

  • Park, Su-Young;Song, Jeong-Heon;Lee, Dong-Han;Seo, Doo-Chun;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.305-307
    • /
    • 2007
  • KOMPSAT-2(K-2) 의 MSC 는 CCD pixel 별 band 별 특성, 감도 및 시간에 따른 변화, CCD Geometry 등에 의해 왜곡 현상이 일어나며 위성 발사 전에 실험실에서의 충분한 실험과 Calibration 작업 을 통해 얻어진 값들을 사용하여 Image Restoration, 상대 복사 보정, 절대 복사 보정 등의 작업들을 거쳐서 왜곡 현상을 보정하게 된다. 그 중 복사 보정에 해당하는 NUC(NonUniformity Correction)은 MSC 각각의 픽셀들이 상이한 특성을 나타내는 것을 균일한 이미지로 보정하는 작업으로 무엇보다 우선시 되는 검보정 작업이다. K-2 NUC table 생성에는 시스템 특성상 몇 가지 사항을 고려 하여 위성에 upload 하는 high frequency NUC(HF NUC)과 지상국에서 처리할 수 있는 low frequency NUC(LF NUC)으로 구분하여 알고리즘을 생성하였다.

  • PDF

Visualization of the Slurry Flow-Field during Chemical Mechanical Polishing by PIV (PIV를 이용한 Chemical Mechanical Polishing 공정 중의 연마용액 유동흐름 측정)

  • Shin Sanghee;Kim MunKi;Yoon Youngbin;Koh Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.48-51
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) is popularly used in production of semiconductor because of large area polishing ability probability of improvement for more integrated circuit. However, present CMP processing causes some non-uniformity errors which can be critical for highly integrated circuit. Previous studies predict that flow-field of slurry during CMP can create non-uniformity, but no quantitative measurement has conducted. In this study, using PIV, slurry velocity flow-field during CMP is measured by changing the ratio of RPM of pad and carrier with tuned PIV system adequate for small room in CMP machine and Cabot's non-groove pad Epad-A100. The result show that velocity of slurry is majorly determined by pad-rpm and the ratio of between carrier and pad rpm make some changes in streamlines.

  • PDF

Application of a newly developed software program for image quality assessment in cone-beam computed tomography

  • de Oliveira, Marcus Vinicius Linhares;Santos, Antonio Carvalho;Paulo, Graciano;Campos, Paulo Sergio Flores;Santos, Joana
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose: The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. Materials and Methods: A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. Results: The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. Conclusion: This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.