• Title/Summary/Keyword: image technology

Search Result 9,453, Processing Time 0.038 seconds

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

Digital Watermarking Technique for Images with Perspective Distortion

  • Chotikakamthorn, Nopporn;Yawai, Wiyada
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1090-1093
    • /
    • 2004
  • In this paper, a problem of geometrically distorted images is considered. In particular, the paper discusses the detection of a watermark from a photographed image of the watermarked picture. The image is possibly obtained by using a digital camera. This watermark detection problem is made difficult by various geometric distortions added to the original picture through the printing and photographing processes. In particular, the paper focuses on the geometric distortion due to a projective transformation, as part of a camera 3D-to-2D imaging process. It is well-known that a cross ratio of collinear points is invariant under a perspective projection. By exploiting this fact, a projective-invariant digital watermarking technique is developed. By detecting the picture's corners, and the image center point at the intersection of two main diagonal lines, predefined cross ratios are used to compute the watermark embedded locations. From those identified embedding pixel locations, a watermark can be detected by performing a correlation between a watermark pattern and the image over those pixels. The proposed method does not require an inverse transformation on the distorted image, thus simplifying the detection process. Performance of the proposed method has been analyzed through computer experiments

  • PDF

Research on Efficient Usage of 3D Stereoscopic Technology (3D 스테레오스코픽(Stereoscopic)기술의 효율적 활용에 관한 연구)

  • Kim, Ji-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • Stereoscopic technology can be regarded as core basis technology which is commonly requested in field of next generation stereoscopic multi media information communication. Realization of stereoscopic image in order to express natural images that are close to reality is a part that human constantly put effort, it first began with visual recognition system, went through stereo picture by using binocular disparity and were conducted as video clip stereoscopic age. Life is changing, a new culture is formed, there were technological development which realized imagination as reality based on expansion of IT industry and core trend, and there is 3D stereoscopic image technology in the center. We will look at technology development tendency and development strategy of 3D stereoscopic image in this essay, and will suggest efficient usage plan of 3D stereoscopic image technology for continuous market expansion.

CCTV Monitoring System Development for Safety Management and Privacy in Manufacturing Site

  • Han, Ji Hee;Ok, Sang Hun;Song, Kyu;Jang, Dong Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.272-277
    • /
    • 2017
  • CCTV image processing techniques have been developed for safety management in manufacturing sites. However, CCTV growth has become a social problem for video surveillance with regard to privacy. This study aims to manage the safety system efficiently and protect privacy simultaneously. In this study, the CCTV monitoring system is composed of five steps (accident monitoring, detection, notification, management, restoration). De-identified image is observed when we are in a normal situation. De-identified image changes to identified image when it detects an accident. As soon as it detects an accident, the accident information is sent to the safety administrator. Then the administrator could conduct safety measures. Afterward, accumulated accident data could be used for statistical data that could be utilized as analyzing expecting accident.

Camera Source Identification of Digital Images Based on Sample Selection

  • Wang, Zhihui;Wang, Hong;Li, Haojie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3268-3283
    • /
    • 2018
  • With the advent of the Information Age, the source identification of digital images, as a part of digital image forensics, has attracted increasing attention. Therefore, an effective technique to identify the source of digital images is urgently needed at this stage. In this paper, first, we study and implement some previous work on image source identification based on sensor pattern noise, such as the Lukas method, principal component analysis method and the random subspace method. Second, to extract a purer sensor pattern noise, we propose a sample selection method to improve the random subspace method. By analyzing the image texture feature, we select a patch with less complexity to extract more reliable sensor pattern noise, which improves the accuracy of identification. Finally, experiment results reveal that the proposed sample selection method can extract a purer sensor pattern noise, which further improves the accuracy of image source identification. At the same time, this approach is less complicated than the deep learning models and is close to the most advanced performance.

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

ROI Image Compression Method Using Eye Tracker for a Soldier (병사의 시선감지를 이용한 ROI 영상압축 방법)

  • Chang, HyeMin;Baek, JooHyun;Yang, DongWon;Choi, JoonSung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.257-266
    • /
    • 2020
  • It is very important to share tactical information such as video, images, and text messages among soldiers for situational awareness. Under the wireless environment of the battlefield, the available bandwidth varies dynamically and is insufficient to transmit high quality images, so it is necessary to minimize the distortion of the area of interests such as targets. A natural operating method for soldiers is also required considering the difficulty in handling while moving. In this paper, we propose a natural ROI(region of interest) setting and image compression method for effective image sharing among soldiers. We verify the proposed method through prototype system design and implementation of eye gaze detection and ROI-based image compression.

A Hierarchical Bilateral-Diffusion Architecture for Color Image Encryption

  • Wu, Menglong;Li, Yan;Liu, Wenkai
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • During the last decade, the security of digital images has received considerable attention in various multimedia transmission schemes. However, many current cryptosystems tend to adopt a single-layer permutation or diffusion algorithm, resulting in inadequate security. A hierarchical bilateral diffusion architecture for color image encryption is proposed in response to this issue, based on a hyperchaotic system and DNA sequence operation. Primarily, two hyperchaotic systems are adopted and combined with cipher matrixes generation algorithm to overcome exhaustive attacks. Further, the proposed architecture involves designing pixelpermutation, pixel-diffusion, and DNA (deoxyribonucleic acid) based block-diffusion algorithm, considering system security and transmission efficiency. The pixel-permutation aims to reduce the correlation of adjacent pixels and provide excellent initial conditions for subsequent diffusion procedures, while the diffusion architecture confuses the image matrix in a bilateral direction with ultra-low power consumption. The proposed system achieves preferable number of pixel change rate (NPCR) and unified average changing intensity (UACI) of 99.61% and 33.46%, and a lower encryption time of 3.30 seconds, which performs better than some current image encryption algorithms. The simulated results and security analysis demonstrate that the proposed mechanism can resist various potential attacks with comparatively low computational time consumption.

Antiferroelectric Liquid Crystal Display with High Image Quality

  • Yu, Jeong-Seon;Chang, Young-Joo;Yoo, Jeong-Geun;Jeong, Dong-Jin;Park, Sung-Chon;Chae, Su-Yong;Yang, Hong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.545-547
    • /
    • 2002
  • The antiferroelectric liquid crystal display (AFLCD) is unique display that can show the perfect moving image using the passive matrix driving scheme. We optimized the driving waveform and introduced the dual driving method. Also, by improving this driving method and using line inversion method, we realized AFLC display with high image quality, which has 160(RGB)${\times}$240, 32768colors, crosstalk free and flicker free. The contrast ratio is greater than 60:1, and the brightness is above 200cd/$m^2$.

  • PDF

A Study on the Interpolation Algorithm to Improve the Blurring of Magnified Image (확대 영상의 몽롱화 현상을 제거하기 위한 보간 알고리즘 연구)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.562-569
    • /
    • 2010
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the blurring of magnified image. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the blurring of magnified image. As a result, the nearest neighbor interpolation, which is the most frequently applied algorithm for the existing image interpolation algorithm, shows that the identification of a magnified image is not possible. Therefore, this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson' curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter, this study will develop an interpolation algorithm that has an excellent improvement for the boundary of the image and continuous and flexible property by using the NURBS, Ferguson' complex surface, and Bezier surface used in CAD/CAM engineering based on the results of this study.