• 제목/요약/키워드: image space

검색결과 3,548건 처리시간 0.026초

Deep survey using deep learning: generative adversarial network

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제44권2호
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • There are a huge number of faint objects that have not been observed due to the lack of large and deep surveys. In this study, we demonstrate that a deep learning approach can produce a better quality deep image from a single pass imaging so that could be an alternative of conventional image stacking technique or the expensive large and deep surveys. Using data from the Sloan Digital Sky Survey (SDSS) stripe 82 which provide repeatedly scanned imaging data, a training data set is constructed: g-, r-, and i-band images of single pass data as an input and r-band co-added image as a target. Out of 151 SDSS fields that have been repeatedly scanned 34 times, 120 fields were used for training and 31 fields for validation. The size of a frame selected for the training is 1k by 1k pixel scale. To avoid possible problems caused by the small number of training sets, frames are randomly selected within that field each iteration of training. Every 5000 iterations of training, the performance were evaluated with RMSE, peak signal-to-noise ratio which is given on logarithmic scale, structural symmetry index (SSIM) and difference in SSIM. We continued the training until a GAN model with the best performance is found. We apply the best GAN-model to NGC0941 located in SDSS stripe 82. By comparing the radial surface brightness and photometry error of images, we found the possibility that this technique could generate a deep image with statistics close to the stacked image from a single-pass image.

  • PDF

A Survey on Public Preference for Image Styles of Dining Space Depending on Types of Passage Rites in Korea - Focused on University Students - (통과 의례 종류에 따른 식 공간 이미지 스타일 선호도 조사 - 대학생 대상으로 -)

  • Kim, Mi-Ja;Park, Geum-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • 제25권6호
    • /
    • pp.719-724
    • /
    • 2010
  • The purpose of this study was to survey public preferences for dining space image styles depending on the types of passage rites in Korea and to determine potential differences in public preferences for dining space image styles depending on the types of passage rites in terms of various general characteristics such as gender, age, family type, and preference for the image and color styles of the dining space. As a result, this study determined the following: According to a public preference survey of dining space image styles depending on the type of passage rites, our respondents showed the highest preference for casual images (27.1%) at a party for a 100-day-old baby. Additionally, our respondents showed the highest preference for casual images (27.4%) when celebrating a baby's first birthday but showed the highest preference for romantic images (35.8%) when celebrating a baby girl's first birthday. Our respondents showed the highest preference for casual images (21.4%) for graduation ceremonies. Our respondents showed the highest preference for classic images (21.7%) at coming-of-age ceremonies for new adult men, but also showed highest preference for elegant images (26.2%) at coming-of-age ceremonies for new adult women. Moreover, the respondents showed highest preference for classic images (41.0%) at traditional wedding ceremonies but elegant images (24.1%) at modern wedding ceremonies. In contrast, the respondents showed highest preference for classic images (31.3%) for a 60th birthday party. The highest preference for classic images (28.9%) was found for a diamond wedding ceremony. Respondents showed highest preference for classic images (30.4%) for a funeral ceremony Finally, our respondents showed highest preference for classic images (32.5%) at memorial services (religious ceremonies).

Algorithm Selection Method for Efficient Maximum Intensity Projection Based on User Preference (사용자 선호에 기반한 효율적 최대 휘소 가시화 알고리즘의 선택 방법)

  • Han, Cheol Hee;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • 제21권2호
    • /
    • pp.87-97
    • /
    • 2018
  • Maximum intensity projection (MIP) is a common visualization technique in medical imaging system. A typical method to improve the performance of MIP is empty space leaping, which skips unnecessary area. This research proposes a new method to improve the existing empty space leaping. In order to skip more regions, we introduce a variety of acceleration strategies that use some tolerance given by the user to take part in image quality loss. Each proposed method shows various image quality and speed, and this study compares them to select the best one. Experimental results show that it is most efficient to add a constant tolerance function when the image quality required by the user is low. Conversely, when the user required image quality is high, a function with a low tolerance of volume center is most effective. Applying the proposed method to general MIP visualization can generate a relatively high quality image in a short time.

A Study on Quantitative Analysis Model for Space Analysis - Focused on a Digital Image Processing and Multiple Regression Analysis of Recognition Amount - (공간분석을 위한 정량적 분석 모델에 관한 연구 - 이미지 영상처리와 설문조사 데이터의 다중 회귀분석을 중심으로 -)

  • Lee Hyok-Jun
    • Korean Institute of Interior Design Journal
    • /
    • 제14권2호
    • /
    • pp.217-224
    • /
    • 2005
  • The lack of objective decisive criteria and the absence of analyzing tools accrued from the experiments on various types developed from space design process makes it difficult to select and execute alternatives for them. As an attempt of coping with these problems, the aims of this study is to establish space analysis' models and to propose possibility of analyzing models by utilizing the technology of image process. It is now under study in the field of artificial intelligence based on the accomplishment of digital images. This study focused on establishment an analysis model based on accomplished digital images and image processing framework. It helps utilize various processing technologies that are currently in use of image processes, and problems of the study can be supplemented through further follow-up studies. Finally, analysis model can be constructed gradually huge design data in the analogue data to the digital image database and be proposed with index in design or evaluation step.

Image Reconstruction Using Line-scan Image for LCD Surface Inspection (LCD표면 검사를 위한 라인스캔 영상의 재구성)

  • 고민석;김우섭;송영철;최두현;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제41권4호
    • /
    • pp.69-74
    • /
    • 2004
  • In this paper, we propose a novel method for improving defect-detection performance based on reconstruction of line-scan camera images using both the projection profiles and color space transform. The proposed method consists of RGB region segmentation, representative value reconstruction using the tracing system, and Y image reconstruction using color-space transformation. Through experiments it is demonstrated that the performance using the reconstructed image is better than that using aerial image for LCD surface inspection.

Field-Curvature Correction According to the Curvature of a CMOS Image-Sensor Using Air-Gap Optimization

  • Kwon, Jong-Hoon;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.658-664
    • /
    • 2015
  • Lens designers generally refer to flat image fields and attempt to minimize the field curvature. Present-day CMOS image sensors for mobile phone cameras, however, are not flat, but curved. Sometimes it is necessary to generate an intentional field curvature according to the degree and direction of the CMOS image-sensor’s curvature. This paper presents the degree of curvature of a CMOS image sensor measured using an interferometer, and proposes an effective compensation method that minimizes the net field curvature through optimizing the air gap between lens elements, which is demonstrated using simulations and experiments.

Space-Variant B-Spline Functions for Image Interpolation (영상보간을 위한 공간변화(Space-Variant) B-Splin 함수)

  • 이병길;김순자;하영호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제40권4호
    • /
    • pp.394-401
    • /
    • 1991
  • B-spline function is generally used for an image interpolation because of its smoothness and continuity, but it accompanies a large amount of blurring effect. In this paper, a space-variant B-spline interpolation function is proposed through deblurring process followed by de-aliasing process. The proposed function has parametric expression and performs smoothing and edge-enhancement adaptively in the interpolation process according to local property of the image. Application of this function to image enlargement, rotation, and curve representation producted good results. Even in the presence of noise, noise smoothing effect as well as edge-enhancement were observed in the image interpolation process.

Statistical analysis for RMSE of 3D space calibration using the DLT (DLT를 이용한 3차원 공간검증시 RMSE에 대한 통계학적 분석)

  • Lee, Hyun-Seob;Kim, Ky-Hyeung
    • Korean Journal of Applied Biomechanics
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to design the method of 3D space calibration to reduce RMSE by statistical analysis when using the DLT algorithm and control frame. Control frame for 3D space calibration was consist of $1{\times}3{\times}2m$ and 162 contort points adhere to it. For calculate of 3D coordination used two methods about 2D coordination on image frame, 2D coordinate on each image frame and mean coordination. The methods of statistical analysis used one-way ANOVA and T-test. Significant level was ${\alpha}=.05$. The compose of methods for reduce RMSE were as follow. 1. Use the control frame composed of 24-44 control points arranged equally. 2. When photographing, locate control frame to center of image plane(image frame) o. use the lens of a few distortion. 3. When calculate of 3D coordination, use mean of 2D coordinate obtainable from all image frames.

Denoising Diffusion Null-space Model and Colorization based Image Compression

  • Indra Imanuel;Dae-Ki Kang;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.22-30
    • /
    • 2024
  • Image compression-decompression methods have become increasingly crucial in modern times, facilitating the transfer of high-quality images while minimizing file size and internet traffic. Historically, early image compression relied on rudimentary codecs, aiming to compress and decompress data with minimal loss of image quality. Recently, a novel compression framework leveraging colorization techniques has emerged. These methods, originally developed for infusing grayscale images with color, have found application in image compression, leading to colorization-based coding. Within this framework, the encoder plays a crucial role in automatically extracting representative pixels-referred to as color seeds-and transmitting them to the decoder. The decoder, utilizing colorization methods, reconstructs color information for the remaining pixels based on the transmitted data. In this paper, we propose a novel approach to image compression, wherein we decompose the compression task into grayscale image compression and colorization tasks. Unlike conventional colorization-based coding, our method focuses on the colorization process rather than the extraction of color seeds. Moreover, we employ the Denoising Diffusion Null-Space Model (DDNM) for colorization, ensuring high-quality color restoration and contributing to superior compression rates. Experimental results demonstrate that our method achieves higher-quality decompressed images compared to standard JPEG and JPEG2000 compression schemes, particularly in high compression rate scenarios.

Digital Halftoning with Maze Generation Algorithm (미로 생성 알고리즘을 이용한 디지털 하프토닝)

  • Jho, Cheung-Woon
    • Journal of Advanced Navigation Technology
    • /
    • 제13권6호
    • /
    • pp.984-990
    • /
    • 2009
  • Halftoning is very important image processing techniques in the digital printing industry which is a process of converting a continuous-tone image to bi-level tone image. In this paper we introduce a new digital halftoning method based on maze generation algorithm as a replacement algorithm of halftoning with space-filling curve. Previous error-diffusion methods based on space-filling curve suffer from regular pattern artifacts from uniform scan pattern. We use maze generation algorithm to remove this undesirable pattern of space-filling curve method.

  • PDF