• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.027 seconds

A Dynamic Segmentation Method for Representative Key-frame Extraction from Video data (동적 분할 기법을 이용한 비디오 데이터의 대표키 프레임 추출)

  • Lee, Soon-Hee;Kim, Young-Hee;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.1
    • /
    • pp.46-57
    • /
    • 2001
  • To access the multimedia data, such as video data with temporal properties, the content-based image retrieval technique is required. Moreover, one of the basic techniques for content-based image retrieval is an extraction of representative key-frames. Not only did we implement this method, but also by analyzing the video data, we have proven the proposed method to be both effective and accurate. In addition, this method is expected to solve the real world problem of building video databases, as it is very useful in building an index.

  • PDF

A Study on Analog and Digital Meter Recognition Based on Image Processing Technique (영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구)

  • 김경호;진성일;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF

Virtual Fitting System Using Deep Learning Methodology: HR-VITON Based on Weight Sharing, Mixed Precison & Gradient Accumulation (딥러닝 의류 가상 합성 모델 연구: 가중치 공유 & 학습 최적화 기반 HR-VITON 기법 활용)

  • Lee, Hyun Sang;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.145-160
    • /
    • 2022
  • Purpose The purpose of this study is to develop a virtual try-on deep learning model that can efficiently learn front and back clothes images. It is expected that the application of virtual try-on clothing service in the fashion and textile industry field will be vitalization. Design/methodology/approach The data used in this study used 232,355 clothes and product images. The image data input to the model is divided into 5 categories: original clothing image and wearer image, clothing segmentation, wearer's body Densepose heatmap, wearer's clothing-agnosting. We advanced the HR-VITON model in the way of Mixed-Precison, Gradient Accumulation, and sharing model weights. Findings As a result of this study, we demonstrated that the weight-shared MP-GA HR-VITON model can efficiently learn front and back fashion images. As a result, this proposed model quantitatively improves the quality of the generated image compared to the existing technique, and natural fitting is possible in both front and back images. SSIM was 0.8385 and 0.9204 in CP-VTON and the proposed model, LPIPS 0.2133 and 0.0642, FID 74.5421 and 11.8463, and KID 0.064 and 0.006. Using the deep learning model of this study, it is possible to naturally fit one color clothes, but when there are complex pictures and logos as shown in <Figure 6>, an unnatural pattern occurred in the generated image. If it is advanced based on the transformer, this problem may also be improved.

Object Detection using Multiple Color Normalization and Moving Color Information (다중색상정규화와 움직임 색상정보를 이용한 물체검출)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.721-728
    • /
    • 2005
  • This paper suggests effective object detection system for moving objects with specified color and motion information. The proposed detection system includes the object extraction and definition process which uses MCN(Multiple Color Normalization) and MCWUPC(Moving Color Weighted Unmatched Pixel Count) computation to decide the existence of moving object and object segmentation technique using signature information is used to exactly extract the objects with high probability. Finally, real time detection system is implemented to verify the effectiveness of the technique and experiments show that the success rate of object tracking is more than $89\%$ of total 120 image frames.

Improving the Vehicle Damage Detection Model using YOLOv4 (YOLOv4를 이용한 차량파손 검출 모델 개선)

  • Jeon, Jong Won;Lee, Hyo Seop;Hahn, Hee Il
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.750-755
    • /
    • 2021
  • This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

A Hybrid Proposed Framework for Object Detection and Classification

  • Aamir, Muhammad;Pu, Yi-Fei;Rahman, Ziaur;Abro, Waheed Ahmed;Naeem, Hamad;Ullah, Farhan;Badr, Aymen Mudheher
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1176-1194
    • /
    • 2018
  • The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.

New Carotid Artery Stenosis Measurement Method Using MRA Images (경동맥 MRA 영상을 이용한 새로운 내경 측정 방법)

  • 김도연;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1247-1254
    • /
    • 2003
  • Currently. the north american symptomatic carotid endarterectomy trial, european carotid surgery trial, and common carotid method are used to measure the carotid stenosis for determining candidate for carotid endarterectomy using the projection angiography from different modalities such as digital subtraction angiography. rotational angiography, computed tomography angiography and magnetic resonance angiography. A new computerized carotid stenosis measuring system was developed using MR angiography axial image to overcome the drawbacks of conventional carotid stenosis measuring methods, to reduce the variability of inter-observer and intra-observer. The gray-level thresholding is one of the most popular and efficient method for image segmentation. We segmented the carotid artery and lumen from three-dimensional time-of-flight MRA axial image using gray-level thresholding technique. Using the measured intima-media thickness value of common carotid artery for each cases, we separated carotid artery wall from the segmented carotid artery region. After that, the regions of segmented carotid without artery wall were divided into region of blood flow and plaque. The calculation of carotid stenosis degree was performed as the following; carotid stenosis grading is(area measure of plaque/area measure of blood flow region and plaque) * 100%.

An Algorithm of Welding Bead Detection and Evaluation Using and Multiple Filters Geodesic Active Contour (다중필터와 축지적 활성 윤곽선 알고리즘을 이용한 용접 비드 검출 및 판단 알고리즘)

  • Milyahilu, John;Kim, Young-Bong;Lee, Jae Eun;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • In this paper, we propose an algorithm of welding bead detection and evaluation using geodesic active contour algorithm and high pass filter with image processing technique. The algorithm uses histogram equalization and high pass filter as gaussian filter to improve contrast. The image processing techniques smoothens the welding beads reduce the noise on an image. Then, the algorithm detects the welding bead area by applying the geodesic active contour algorithm and morphological ooperation. It also applies the balloon force that either inflates in, or deflates out the evolving contour for a better segmentation. After that, we propose a method for determining the quality of welding bead using effective length and width of the detected bead. In the experiments, our algorithm achieved the highest recall, precision, F-measure and IOU as 0.9894, 0.9668, 0.9780, and 0.8957 respectively. We compared the proposed algorithm with the conventional algorithms to evaluate the performance of the proposed algorithm. The proposed algorithm achieved better performance compared to the conventional ones with a maximum computational time of 0.6 seconds for segmenting and evaluating one welding bead.

Development of Automatic Segmentation Algorithm of Intima-media Thickness of Carotid Artery in Portable Ultrasound Image Based on Deep Learning (딥러닝 모델을 이용한 휴대용 무선 초음파 영상에서의 경동맥 내중막 두께 자동 분할 알고리즘 개발)

  • Choi, Ja-Young;Kim, Young Jae;You, Kyung Min;Jang, Albert Youngwoo;Chung, Wook-Jin;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.100-106
    • /
    • 2021
  • Measuring Intima-media thickness (IMT) with ultrasound images can help early detection of coronary artery disease. As a result, numerous machine learning studies have been conducted to measure IMT. However, most of these studies require several steps of pre-treatment to extract the boundary, and some require manual intervention, so they are not suitable for on-site treatment in urgent situations. in this paper, we propose to use deep learning networks U-Net, Attention U-Net, and Pretrained U-Net to automatically segment the intima-media complex. This study also applied the HE, HS, and CLAHE preprocessing technique to wireless portable ultrasound diagnostic device images. As a result, The average dice coefficient of HE applied Models is 71% and CLAHE applied Models is 70%, while the HS applied Models have improved as 72% dice coefficient. Among them, Pretrained U-Net showed the highest performance with an average of 74%. When comparing this with the mean value of IMT measured by Conventional wired ultrasound equipment, the highest correlation coefficient value was shown in the HS applied pretrained U-Net.