• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.029 seconds

3D conversion of 2D video using depth layer partition (Depth layer partition을 이용한 2D 동영상의 3D 변환 기법)

  • Kim, Su-Dong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • In this paper, we propose a 3D conversion algorithm of 2D video using depth layer partition method. In the proposed algorithm, we first set frame groups using cut detection algorithm. Each divided frame groups will reduce the possibility of error propagation in the process of motion estimation. Depth image generation is the core technique in 2D/3D conversion algorithm. Therefore, we use two depth map generation algorithms. In the first, segmentation and motion information are used, and in the other, edge directional histogram is used. After applying depth layer partition algorithm which separates objects(foreground) and the background from the original image, the extracted two depth maps are properly merged. Through experiments, we verify that the proposed algorithm generates reliable depth map and good conversion results.

Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences (낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출)

  • Park, Jung-Woo;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.851-861
    • /
    • 2006
  • The paper proposes a novel unsupervised video object segmentation algorithm for image sequences with low depth-of-field (DOF), which is a popular photographic technique enabling to represent the intention of photographer by giving a clear focus only on an object-of-interest (OOI). The proposed algorithm largely consists of two modules. The first module automatically extracts OOIs from the first frame by separating sharply focused OOIs from other out-of-focused foreground or background objects. The second module tracks OOIs for the rest of the video sequence, aimed at running the system in real-time, or at least, semi-real-time. The experimental results indicate that the proposed algorithm provides an effective tool, which can be a basis of applications, such as video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing systems.

Implementation of JBIG2 CODEC with Effective Document Segmentation (문서의 효율적 영역 분할과 JBIG2 CODEC의 구현)

  • 백옥규;김현민;고형화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.575-583
    • /
    • 2002
  • JBIG2 is an International Standard fur compression of Bi-level images and documents. JBIG2 supports three encoding modes for high compression according to region features of documents. One of which is generic region coding for bitmap coding. The basic bitmap coder is either MMR or arithmetic coding. Pattern matching coding method is used for text region, and halftone pattern coding is used for halftone region. In this paper, a document is segmented into line-art, halftone and text region for JBIG2 encoding and JBIG2 CODEC is implemented. For efficient region segmentation of documents, region segmentation method using wavelet coefficient is applied with existing boundary extraction technique. In case of facsimile test image(IEEE-167a), there is improvement in compression ratio of about 2% and enhancement of subjective quality. Also, we propose arbitrary shape halftone region coding, which improves subjective quality in talc neighboring text of halftone region.

Face Detection based on Pupil Color Distribution Maps with the Frequency under the Illumination Variance (빈도수를 고려한 눈동자색 분포맵에 기반한 조명 변화에 강건한 얼굴 검출 방법)

  • Cho, Han-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.225-232
    • /
    • 2009
  • In this paper, a new face detection method based on pupil color distribution maps with the frequency under the illumination variance is proposed. Face-like regions are first extracted by applying skin color distribution maps to a color image and then, they are reduced by using the standard deviation of chrominance components. In order to search for eye candidates effectively, the proposed method extracts eye-like regions from face-like regions by using pupil color distribution maps. Furthermore, the proposed method is able to detect eyes very well by segmenting the eye-like regions, based on a lighting compensation technique and a segmentation algorithm even though face regions are changed into dark-tone due to varying illumination conditions. Eye candidates are then detected by means of template matching method. Finally, face regions are detected by using the evaluation values of two eye candidates and a mouth. Experimental results show that the proposed method can achieve a high performance.

  • PDF

A Study on the Extraction of Road & Vehicles Using Image Processing Technique (영상처리 기술을 이용한 도로 및 차량 추출 기법에 관한 연구)

  • Ga, Chill-O;Byun, Young-Gi;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.3-9
    • /
    • 2005
  • The extraction of traffic information based on image processing is under broad research recently because the method based on image processing takes less cost and effort than the traditional method based on physical equipment. The main purpose of the algorithm based on image processing is to extract vehicles from an image correctly. Before the extraction, the algorithm needs the pre-processing such as background subtraction and binary image thresholding. During the pre-processing much noise is brought about because roadside tree and passengers in the sidewalk as well as vehicles are extracted as traffic flow. The noise undermines the overall accuracy of the algorithm. In this research, most of the noise could be removed by extracting the exact road area which does not include sidewalk or roadside tree. To extract the exact road area, traffic lanes in the image were used. Algorithm speed also increased. In addition, with the ratio between the sequential images, the problem caused by vehicles' shadow was minimized.

  • PDF

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

Applying differential techniques for 2D/3D video conversion to the objects grouped by depth information (2D/3D 동영상 변환을 위한 그룹화된 객체별 깊이 정보의 차등 적용 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1302-1309
    • /
    • 2012
  • In this paper, we propose applying differential techniques for 2D/3D video conversion to the objects grouped by depth information. One of the problems converting 2D images to 3D images using the technique tracking the motion of pixels is that objects not moving between adjacent frames do not give any depth information. This problem can be solved by applying relative height cue only to the objects which have no moving information between frames, after the process of splitting the background and objects and extracting depth information using motion vectors between objects. Using this technique all the background and object can have their own depth information. This proposed method is used to generate depth map to generate 3D images using DIBR(Depth Image Based Rendering) and verified that the objects which have no movement between frames also had depth information.

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

Enhanced Technique for Fiber Detection of ECC Sectional Image (ECC 화상 단면의 향상된 섬유 검출 기법)

  • Lee, Bang-Yeon;Kim, Yun-Yong;Kim, Jeong-Su;Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1009-1012
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC(Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device(CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

  • PDF

Region Growing Technique Using Threshold for Cell Image Segmentation (세포 영상 영역 분할을 위한 Threshold를 적용한 Region Growing 기법)

  • 강미영;하진영;김호성;김백섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.533-535
    • /
    • 1999
  • 자궁경부진 세포인식 시스템에 있어서 가장 중요한 것이 영상처리를 이용하여 세포핵과 세포질을 추출하여 세포의 형태적인 정보를 알아내는 과정이다. 기존의 전역 thresholding 기법이나 region growing의 경우는 pap smear 검사를 통해 얻어진 세포 영상을 분할할 수 있는 region growing 기법을 제안한다. 제안된 region growing 기법은 초기에 seed를 검출할 때 local threshold growing 기법을 제안한다. 제안된 region growing 기법은 초기에 seed를 검출할 때 local threshold 개념을 도입하여 seed의 검출을 고르게 하고, 2가지 확장 조건을 사용하여 영역을 확장한다. 첫 번째 확장 조건은 비정상 세포나 artifact가 많아서 어둡게 나타나는 영상이나 세포질과 배경의 경계가 뚜렷하지 않아서 세포질의 구별이 어려운 영상의 영역 분할이 가능하도록 그 특성을 반영하고, 두 번째 조건은 세포가 흡수하는 빛의 양이 일정하다는 가정으로 영상에서의 지역 특성(gray level, color 등을 반영한다. 제안된 기법은 정상세포 영상뿐만 아니라 비정상 세포 영상에 대하여 over-segment나 under-segment하는 경우를 줄여서 영역 분할에 좋은 결과를 보인다.

  • PDF