• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.022 seconds

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.

Symmetry Detection Through Hybrid Use Of Location And Direction Of Edges

  • Koo, Ja Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.9-15
    • /
    • 2016
  • Symmetry is everywhere in the world around us from galaxy to microbes. From ancient times symmetry is considered to be a reflection of the harmony of universe. Symmetry is not only a significant clue for human cognitive process, but also useful information for computer vision such as image understanding system. Application areas include face detection and recognition, indexing of image database, image segmentation and detection, analysis of medical images, and so on. The technique used in this paper extracts edges, and the perpendicular bisector of any two edge points is considered to be a candidate axis of symmetry. The coefficients of candidate axis are accumulated in the coefficient space. Then the axis of symmetry is determined to be the line for which the coefficient histogram has maximum value. In this paper, an improved method is proposed that utilizes the directional information of edges, which is a byproduct of the edge detection process. Experiment on 20 test images shows that the proposed method performs 22.7 times faster than the original method. In another test on 5 images with 4% salt-and-pepper noise, the proposed method detects the symmetry successfully, while the original method fails. This result reveals that the proposed method enhances the speed and accuracy of detection process at the same time.

Obstacle Detection Algorithm Using Forward-Viewing Mono Camera (전방 모노카메라 기반 장애물 검출 기술)

  • Lee, Tae-Jae;Lee, Hoon;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.858-862
    • /
    • 2015
  • This paper presents a new forward-viewing mono-camera based obstacle detection algorithm for mobile robots. The proposed method extracts the coarse location of an obstacle in an image using inverse perspective mapping technique from sequential images. In the next step, graph-cut based image labeling is conducted for estimating the exact obstacle boundary. The graph-cut based labeling algorithm labels the image pixels as either obstacle or floor as the final outcome. Experiments are performed to verify the obstacle detection performance of the developed algorithm in several examples, including a book, box, towel, and flower pot. The low illumination condition, low color contrast between floor and obstacle, and floor pattern cases are also tested.

A Content-Based Image Classification using Neural Network (신경망을 이용한 내용기반 영상 분류)

  • 이재원;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.505-514
    • /
    • 2002
  • In this Paper, we propose a method of content-based image classification using neural network. The images for classification ate object images that can be divided into foreground and background. To deal with the object images efficiently, object region is extracted with a region segmentation technique in the preprocessing step. Features for the classification are texture and shape features extracted from wavelet transformed image. The neural network classifier is constructed with the extracted features and the back-propagation learning algorithm. Among the various texture features, the diagonal moment was more effective. A test with 300 training data and 300 test data composed of 10 images from each of 30 classes shows correct classification rates of 72.3% and 67%, respectively.

  • PDF

Discrimination of Cancer Cells by Dominant Feature Parameters Method in Thyroid Gland Cells (우세특징파라미터를 이용한 갑상선 암세포의 식별)

  • 나철훈;정동명
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.419-427
    • /
    • 1994
  • A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid Gland cells image that was diagnosed as normal and abnormal (two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. As a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11 % was obtained for Thyroid Gland cells.

  • PDF

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Interactive Projection by Closed-loop based Position Tracking of Projected Area for Portable Projector (이동 프로젝터 투사영역의 폐회로 기반 위치추적에 의한 인터랙티브 투사)

  • Park, Ji-Young;Rhee, Seon-Min;Kim, Myoung-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • We propose an interactive projection technique to display details of a large image in a high resolution and brightness by tracking a portable projector. A closed-loop based tracking method is presented to update the projected image while a user changes the position of the detail area by moving the portable projector. A marker is embedded in the large image to indicate the position to be occupied by the detail image projected by the portable projector. The marker is extracted in sequential images acquired by a camera attached to the portable projector. The marker position in the large display image is updated under a constraint that the center positions of marker and camera frame coincide in every camera frame. The image and projective transformation for warping are calculated using the marker position and shape in the camera frame. The marker's four corner points are determined by a four-step segmentation process which consists of camera image preprocessing based on HSI, edge extraction by Hough transformation, quadrangle test, and cross-ratio test. The interactive projection system implemented by the proposed method performs at about 24fps. In the user study, the overall feedback about the system usability was very high.

A Study on Create Depth Map using Focus/Defocus in single frame (단일 프레임 영상에서 초점을 이용한 깊이정보 생성에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we present creating 3D image from 2D image by extract initial depth values calculated from focal values. The initial depth values are created by using the extracted focal information, which is calculated by the comparison of original image and Gaussian filtered image. This initial depth information is allocated to the object segments obtained from normalized cut technique. Then the depth of the objects are corrected to the average of depth values in the objects so that the single object can have the same depth. The generated depth is used to convert to 3D image using DIBR(Depth Image Based Rendering) and the generated 3D image is compared to the images generated by other techniques.

A Study on Clustering and Color Difference Evaluation of Color Image using HSV Color Space (HSV색공간을 이용한 칼라화상의 클러스터링 및 색차평가에 관한 연구)

  • Kim, Young-Il
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.20-27
    • /
    • 1998
  • This paper describes color clustering method based on color difference in the uniform Munsell color space obtained from hue, saturation, and value. The proposed method operates in the uniform HSV color space which is approximated using ${L^*}{a^*}{b^*}$ coordinate system based on the RGB inputs. A clustering and color difference evaluation are proposed by thresholding NBS unit which is likely to Balinkin color difference equation. Region segmentation and isolation process are carried out ISO DATA algorithm which is a self iterative clustering technique. Through the clustering of 2 input images according to the threshold value, satisfactory results are obtained. So, in conclusion, it is possible to extract result of better region segmentation using human color perception of the objects.

  • PDF

Postal Envelope Image Recognition System for Postal Automation (서장 우편물 자동처리를 위한 우편영상 인식 시스템)

  • Kim, Ho-Yon;Lim, Kil-Taek;Kim, Doo-Sik;Nam, Yun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.429-442
    • /
    • 2003
  • In this paper, we describe an address image recognition system for automatic processing of standard- size letter mail. The inputs to the system are gray-level mail piece images and the outputs are delivery point codes with which a delivery sequence of carrier can be generated. The system includes five main modules; destination address block location, text line separation, character segmentation, character recognition and finally address interpretation. The destination address block is extracted on the basis of experimental knowledge and the line separation and character segmentation is done through the analysis of connected components and vortical runs. For recognizing characters, we developed MLP-based recognizers and dynamical programming technique for interpretation. Since each module has been implemented in an independent way, the system has a benefit that the optimization of each module is relatively easy. We have done the experiment with live mail piece images directly sampled from mail sorting machine in Yuseong post office. The experimental results prove the feasibility of our system.