• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.025 seconds

Exploratory Study of the Applicability of Kompsat 3/3A Satellite Pan-sharpened Imagery Using Semantic Segmentation Model (아리랑 3/3A호 위성 융합영상의 Semantic Segmentation을 통한 활용 가능성 탐색 연구)

  • Chae, Hanseong;Rhim, Heesoo;Lee, Jaegwan;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1889-1900
    • /
    • 2022
  • Roads are an essential factor in the physical functioning of modern society. The spatial information of the road has much longer update cycle than the traffic situation information, and it is necessary to generate the information faster and more accurately than now. In this study, as a way to achieve that goal, the Pan-sharpening technique was applied to satellite images of Kompsat 3 and 3A to improve spatial resolution. Then, the data were used for road extraction using the semantic segmentation technique, which has been actively researched recently. The acquired Kompsat 3/3A pan-sharpened images were trained by putting it into a U-Net based segmentation model along with Massachusetts road data, and the applicability of the images were evaluated. As a result of training and verification, it was found that the model prediction performance was maintained as long as certain conditions were maintained for the input image. Therefore, it is expected that the possibility of utilizing satellite images such as Kompsat satellite will be even higher if rich training data are constructed by applying a method that minimizes the impact of surrounding environmental conditions affecting models such as shadows and surface conditions.

A Study on Segmentation of Preferred Characteristics of Rural Tourists after COVID-19 Using Decision Tree Analysis (의사결정나무분석을 활용한 코로나19 이후 농촌관광객의 선호 특성 세분화 연구)

  • Seung-Hun Lee
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.411-426
    • /
    • 2023
  • Purpose - The purpose of this study was to explore and diagnose the characteristics and behavioural patterns of rural tourists after COVID-19 using decision tree analysis to classify and identify key segmentation groups. Design/methodology/approach - The CHAID algorithm was used as the analysis technique for the decision tree. The explanatory variables used in the analysis of each decision tree model were demographic variables and rural tourism usage behaviour and perception variables, and the target variables were the preferences of rural tourists' activities after COVID-19. From the Rural Tourism 2020 survey data, 614 samples with rural tourism experience were extracted and used in the analysis. Findings - The variables that significantly explained the preference for each type of rural tourism activity after COVID-19 were rural tourism safety perception, repeated visits to the region, rural tourism priority activity, rural tourism accommodation experience, gender, age group, marital status, occupation, and education level. Among them, rural tourism safety perception was the most important explanatory variable in each analysis model. Research implications or Originality - Overall, to promote rural tourism, it is necessary to enhance the safety image of rural tourism, strengthen loyalty programs for repeat visitors, and develop customized products that reflect the preferred trends of rural tourism.

Revisiting diaphragmatic hernia of Joseon period Korean mummy by three-dimensional liver and heart segmentation and model reconstruction

  • Ensung Koh;Da Yeong Lee;Dongsoo Yoo;Myeung Ju Kim;In Sun Lee;Jong Ha Hong;Sang Joon Park;Jieun Kim;Soon Chul Cha;Hyejin Lee;Chang Seok Oh;Dong Hoon Shin
    • Anatomy and Cell Biology
    • /
    • v.55 no.4
    • /
    • pp.507-511
    • /
    • 2022
  • A three-dimensional (3D) segmentation and model reconstruction is a specialized tool to reveal spatial interrelationship between multiple internal organs by generating images without overlapping structures. This technique can also be applicable to mummy studies, but related reports have so far been very rare. In this study, we applied 3D segmentation and model reconstruction to computed tomography images of a Korean mummy with congenital diaphragmatic hernia. As originally revealed by the autopsy in 2013, the current 3D reconstruction reveals that the mummy's heart is shifted to the left due to the liver pushing up to thoracic cavity thorough diaphragmatic hernial defect. We can generate 3D images by calling up the data exclusively from mummy's target organs, thus minimizing the confusion of diagnosis that could be caused by overlapping organs.

Classification of Radish and Chinese Cabbage in Autumn Using Hyperspectral Image (하이퍼스펙트럼 영상을 이용한 가을무와 배추의 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.91-97
    • /
    • 2016
  • The objective of this study was to classify between radish and Chinese cabbage in autumn using hyperspectral images. The hyperspectral images were acquired by Compact Airborne Spectrographic Imager (CASI) with 1m spatial resolution and 48 bands covering the visible and near infrared portions of the solar spectrum from 370 to 1044 nm with a bandwidth of 14 nm. An object-based technique is used for classification of radish and Chinese cabbage. It was found that the optimum parameter values for image segmentation were scale 400, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5. As a result, the overall accuracy of classification was 90.7 % and the kappa coefficient was 0.71. The hyperspectral images can be used to classify other crops with higher accuracy than radish and Chines cabbage because of their similar characteristic and growth time.

Development of Real-time Landslide Inspecting and Monitoring System

  • Hur Chul;Jeon, Yang-Bae;Kim, Choon-Sik;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.243-243
    • /
    • 2000
  • This paper introduces a visual inspecting and monitoring system based on an image processing technique. We propose an image processing method for analyzing landslide movement in real time. The method adopts Laplacian of Gaussian operator to extract linear features for the captured images and uses a linear matching algorithm to distinguish the matching error for those features. When the algorithm is processed, motion parameters such as displacement area and its direction are computed. Once movement is recognized, displacements are estimated graphically with statistical amount in the image plane. The simulation results are shown us to verify the effectiveness of the developed method.

  • PDF

Extraction of singular points of fingerprint image using multiresolution directional information (다해상도 방향성 정보를 이용한 지문영상의 특이점 추출)

  • 이준재;심재창;황석윤;남재열;이주형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.928-938
    • /
    • 1997
  • We propose an algorithm for extracting singular points of fingerprint image using directional information. First, we extract the candidates of singular points using Poincare index in two(lower and higher) resolutional directional images. Then we remove the false singular points using smoothing technique from lower resolutional directional image. And finally we select the singular points in higher resolution corresponding to those in lower resolution. The possible missing points in lower resolution are found by computing Poincare index algong the proposed small curve. And the reliable points are selected from analysis around them. We also propose a method for segmentation of fingerprint as preprocessing step to enhance the computational speed and the performance of system.

  • PDF

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.

Microscopic Image-based Cancer Cell Viability-related Phenotype Extraction (현미경 영상 기반 암세포 생존력 관련 표현형 추출)

  • Misun Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2023
  • During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.

Color Image Segmentation and Textile Texture Mapping of 2D Virtual Wearing System (2D 가상 착의 시스템의 컬러 영상 분할 및 직물 텍스쳐 매핑)

  • Lee, Eun-Hwan;Kwak, No-Yoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.213-222
    • /
    • 2008
  • This paper is related to color image segmentation and textile texture mapping for the 2D virtual wearing system. The proposed system is characterized as virtually wearing a new textile pattern selected by user to the clothing shape section, based on its intensity difference map, segmented from a 2D clothes model image using color image segmentation technique. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern or color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi-automatic processing possible to reduce the manual works to a minimum. According to the proposed system, it can motivate the creative activity of the designers with simulation results on the effect of textile pattern design on the appearance of clothes without manufacturing physical clothes and, as it can help the purchasers for decision-making with them, promote B2B or B2C e-commerce.

Data Augmentation for Tomato Detection and Pose Estimation (토마토 위치 및 자세 추정을 위한 데이터 증대기법)

  • Jang, Minho;Hwang, Youngbae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-55
    • /
    • 2022
  • In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.