• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.033 seconds

Fractal coding of Textural Images (텍스처 영상의 프락탈 코딩)

  • Jang, Jong-Whan
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.77-82
    • /
    • 1996
  • New very low bit rate segmentation image coding technique is proposed by segmenting image into textually homogeneous regions. Regions are classified into on of three perceptually distinct texture classes (perceived constant intensity (class I), smooth texture (class II), and rough texture (class III) using the human Visual System (HVS) and the fractals. To design very low bit rate image coder, it is very important to determine nonoverlap and overlap segmentation method for each texture class. Good quality reconstructed images are obtained with about 0.10 to 0.21 bit per pixel (bpp) for many different types of imagery.

  • PDF

Hierarchical Segmentation of Monumental Inscription Image (금석문 영상의 계층적 분할)

  • 최호형;박영식;김기석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.315-319
    • /
    • 2002
  • The study on shilla monumental inscription has been accomplished by many historians. However, the research on segmentation of monumental inscription image using digital image processing technique is not sufficient. The preprocessing using computer is needed for accurate interpretation of history. In this paper, A morphological filtering using directional information is presented. Directional filtering is effective in reducing noises and preserving edges. The opening and closing operations in the 1st stage are performed for the pixel is aligned to the vertical, horizontal and two diagonal directions. The Opening operation supresses the positive impulse noise while the closing operation the negative ones. Then Directional filter and post-processing are applied to the image. Experimental result shows outstanding performance for interpretation.

  • PDF

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

Unsupervised Image Classification for Large Remotely-sensed Imagery using Regiongrowing Segmentation

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.188-190
    • /
    • 2006
  • A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The local segmentor of the first stage performs regiongrowing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. This stage uses a sliding window strategy with boundary blocking to alleviate a computational problem in computer memory for an enormous data. The global segmentor of the second stage has not spatial constraints for merging to classify the segments resulting from the previous stage. The experimental results show that the new approach proposed in this study efficiently performs the segmentation for the images of very large size and an extensive number of bands

  • PDF

A study on segmentation of medical image using fuzzy set theory (퍼지 이론을 이용한 의료 영상 특징 추출에 관한 연구)

  • 김형석;한영오;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.741-745
    • /
    • 1991
  • This paper describes a feature extraction in digitized chest X-ray image and CT head Image. There are Extraction, Thresholding, Region G rowing, Split-Merge and Relaxation in feature extraction technique. In this study, Region Growing System was realized and Fuzzy Set Theory was applied in order to extract the vague region which the conventional method has difficulties in extracting. The performance of proposed algorithm was proved by being applied to chest X-ray image and CT head image.

  • PDF

Implementation of Video Object Segmentation System for Interactive Personal Broadcasting Service (양방향 개인방송 서비스를 위한 동영상 객체분할 시스템의 구현)

  • Yu, Hong-Yeon;Jun, Do-Young;Kim, Min-Sung;Hong, Sung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.17-19
    • /
    • 2007
  • This paper describe an interactive video object segmentation tool which can be used to generate MPEG-4 video object planes for multimedia broadcasting and enables content based functionalities. In order to apply these functionalities, each frame of video sequence should be represented in terms of video objects. Semiautomatic segmentation can be thought of as a user-assisted segmentation technique. A user can initially mark objects of interest around the real object boundaries. Then the user-guided and selected objects are continuously separated from the unselected areas though time evolution in the image sequences. We proposed method shows very promising result and this encourages the development of object based video editing system.

  • PDF

COUNTING OF FLOWERS BASED ON K-MEANS CLUSTERING AND WATERSHED SEGMENTATION

  • PAN ZHAO;BYEONG-CHUN SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.146-159
    • /
    • 2023
  • This paper proposes a hybrid algorithm combining K-means clustering and watershed algorithms for flower segmentation and counting. We use the K-means clustering algorithm to obtain the main colors in a complex background according to the cluster centers and then take a color space transformation to extract pixel values for the hue, saturation, and value of flower color. Next, we apply the threshold segmentation technique to segment flowers precisely and obtain the binary image of flowers. Based on this, we take the Euclidean distance transformation to obtain the distance map and apply it to find the local maxima of the connected components. Afterward, the proposed algorithm adaptively determines a minimum distance between each peak and apply it to label connected components using the watershed segmentation with eight-connectivity. On a dataset of 30 images, the test results reveal that the proposed method is more efficient and precise for the counting of overlapped flowers ignoring the degree of overlap, number of overlap, and relatively irregular shape.

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.