A new texture segmentation-based image coding technique which performs segmentation based on roughness of textural regions and properties of the human visual system (HVS) is presented. This method solves the problems of a segmentation-based image coding technique with constant segments by proposing a methodology for segmenting an image texturally homogeneous regions with respect to the degree of roughness as perceived by the HVS. The fractal dimension is used to measure the roughness of the textural regions. The segmentation is accomplished by thresholding the fractal dimension so that textural regions are classified into three texture classes; perceived constant intensity, smooth texture, and rough texture. An image coding system with high compression and good image quality is achieved by developing an efficient coding technique for each segment boundary and each texture class. For the boundaries, a binary image representing all the boundaries is created. For regions belonging to perceived constant intensity, only the mean intensity values need to be transmitted. The smooth and rough texture regions are modeled first using polynomial functions, so only the coefficients characterizing the polynomial functions need to be transmitted. The bounda-ries, the means and the polynomial functions are then each encoded using an errorless coding scheme. Good quality reconstructed images are obtained with about 0.08 to 0.3 bit per pixel for three different types of imagery ; a head and shoulder image with little texture variation, a complex image with many edges, and a natural outdoor image with highly textured areas.
Journal of the Korean Institute of Telematics and Electronics
/
v.24
no.5
/
pp.914-922
/
1987
An image coding technique based on a segmentation, which utilizes a simplified description of regions composing an image, is investigated in this paper. The proposed coding technique consists of 3 stages: segmentation, contour coding. In this paper, emphasis was given to texture coding in order to improve a quality of an image. Split-and-merge method was employed for a segmentation. In the texture coding, a linear predictive coding(LPC), along with approximation technique based on a two-dimensional polynomial function was used to encode texture components. Depending on a size of region and a mean square error between an original and a reconstructed image, appropriate texture coding techniques were determined. A computer simulation on natural images indicates that an acceptable image quality at a compression ratio as high as 15-25 could be obtained. In comparison with a discrete cosine transform coding technique, which is the most typical coding technique in the first-generation coding, the proposed scheme leads to a better quality at compression ratio higher than 15-20.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.1
/
pp.64-75
/
2003
Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.12
/
pp.1581-1590
/
1995
Recently, advanced video coding techniques using segmentation technique have been actively researched as candidates for video coding of MPEG-4 standard. The conventional segmentation techniques are unsuitable for real-time process because they have sequential structure. In this paper, we propose a new image segmentation technique using competitive learning neural network for vector quantization. The proposed segmentation procedure consist of prefiltering, primary and secondary segmentation, and a small region ellimination process. Primary segmentation segments input image in detail. Secondary segmentation merges similar region using a repetitive FSCL(Frequency sensitive competive learning) neural network. In this process, it is possible to segment an image from high resolution to low resolution by adjusting the number of repetition. Finally, small regions are merged into adjacent regions. Experimental results show that the procedure described yields reconstructed images of reasonably acceptable quality at bit rates of 0. 25 - 0.3 bit/pel.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1997.06a
/
pp.19-24
/
1997
This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.6
/
pp.43-54
/
2005
This paper proposes a novel texture segmentation method using Bayesian image segmentation method and SOM(Self Organization feature Map). Multi-scale wavelet coefficients are used as the input of SOM, and likelihood and a posterior probability for observations are obtained from trained SOMs. Texture segmentation is performed by a posterior probability from trained SOMs and MAP(Maximum A Posterior) classification. And the result of texture segmentation is improved by context information. This proposed segmentation method shows better performance than segmentation method by HMT(Hidden Markov Tree) model. The texture segmentation results by SOM and multi-sclae Bayesian image segmentation technique called HMTseg also show better performance than by HMT and HMTseg.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.1
/
pp.223-229
/
2018
This paper proposes a robust technique of image segmentation, which can be obtained if the topological persistence of each connected component is used as the feature vector for the graph-based image segmentation. The topological persistence of the components, which are obtained from the super-level set of the image, is computed from the morse function which is associated with the gray-level or color value of each pixel of the image. The procedure for the components to be born and be merged with the other components is presented in terms of zero-dimensional homology group. Extensive experiments are conducted with a variety of images to show the more correct image segmentation can be obtained by merging the components of small persistence into the adjacent components of large persistence.
A new texture segmentation-based image coding technique which performs segmentation based on roughness of textural regions and properties of the human visual system (HVS) is presented for multime-dia teleconference. The segmentation is accomplished by thresholding the fractal dimension so that textural regions are classified into three texture classes; perceived constant intensity, smooth texture, and rough texture. An image coding system with high compression and good image quality is achieved by developing an efficient coding technique for each segment boundary and each texture class. We compare the coding efficiency of this technique with that of a well established technique (discrete cosine transform (DCT) image coding).
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.887-890
/
2012
Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.
International Journal of Computer Science & Network Security
/
v.23
no.7
/
pp.61-70
/
2023
Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.