• 제목/요약/키워드: image segmentation technique

검색결과 350건 처리시간 0.024초

A High Image Compression for Computer Storage and Communication

  • 장종환
    • 자연과학논문집
    • /
    • 제4권
    • /
    • pp.191-220
    • /
    • 1991
  • Human Visual System(HVS)의 특성과 image의 textural regions의 roughness을 이용하여 image segmentation을 행하여 high compression에서도 고화질을 나타내는 새로운 image coder를 이 논문에서 논한다. 제안된 image coder는 constant segments를 가진 segmentation-based image coding technique의 문제들을 다음과 같은 방법론을 제안함으로써 해결하였다. Image를 HVS으로 보았을 때 degree of roughness에 관하여 textually homogeneous regions으로 segmentation하였다. Fractal dimension을 roughness of textural regions을 측정하기 위하여 사용하였다. Segmentation은 fractal dimension을 thresholding하여 textural regions이 three texture classes로 분류하였다(perceived constant intensity, smooth texture, and rough texture). High compression을 가지는 고질화의 image coder는 각각의 segment boundary와 각각의 texture class에 효율적인 coding technique를 적용 함으로 얻었다.

  • PDF

영상 영역화를 이용한 영상 부호화 기법 (An Image Coding Technique Using the Image Segmentation)

  • 정철호;이상욱;박래홍
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.914-922
    • /
    • 1987
  • An image coding technique based on a segmentation, which utilizes a simplified description of regions composing an image, is investigated in this paper. The proposed coding technique consists of 3 stages: segmentation, contour coding. In this paper, emphasis was given to texture coding in order to improve a quality of an image. Split-and-merge method was employed for a segmentation. In the texture coding, a linear predictive coding(LPC), along with approximation technique based on a two-dimensional polynomial function was used to encode texture components. Depending on a size of region and a mean square error between an original and a reconstructed image, appropriate texture coding techniques were determined. A computer simulation on natural images indicates that an acceptable image quality at a compression ratio as high as 15-25 could be obtained. In comparison with a discrete cosine transform coding technique, which is the most typical coding technique in the first-generation coding, the proposed scheme leads to a better quality at compression ratio higher than 15-20.

  • PDF

Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구 (A Study of Automatic Medical Image Segmentation using Independent Component Analysis)

  • 배수현;유선국;김남형
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.

FSCL 신경망을 이용한 영상 분할 (Image Segmentation Using FSCL Neural Network)

  • 홍원학;김웅규;김남철
    • 전자공학회논문지B
    • /
    • 제32B권12호
    • /
    • pp.1581-1590
    • /
    • 1995
  • Recently, advanced video coding techniques using segmentation technique have been actively researched as candidates for video coding of MPEG-4 standard. The conventional segmentation techniques are unsuitable for real-time process because they have sequential structure. In this paper, we propose a new image segmentation technique using competitive learning neural network for vector quantization. The proposed segmentation procedure consist of prefiltering, primary and secondary segmentation, and a small region ellimination process. Primary segmentation segments input image in detail. Secondary segmentation merges similar region using a repetitive FSCL(Frequency sensitive competive learning) neural network. In this process, it is possible to segment an image from high resolution to low resolution by adjusting the number of repetition. Finally, small regions are merged into adjacent regions. Experimental results show that the procedure described yields reconstructed images of reasonably acceptable quality at bit rates of 0. 25 - 0.3 bit/pel.

  • PDF

An Image Segmentation Technique For Very Low Bit Rate Video Coding

  • Jung, Seok-Yoon;Kim, Rin-Chul;Lee, Sang-Uk
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1997년도 Proceedings International Workshop on New Video Media Technology
    • /
    • pp.19-24
    • /
    • 1997
  • This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.

  • PDF

SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 (Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.43-54
    • /
    • 2005
  • 이본 논문에서는 Bayesian 영상 분할법과 SOM(Self Organization feature Map)을 이용한 텍스쳐(Texture) 분할 방법을 제안한다. SOM의 입력으로 다중 스케일에서의 웨이블릿 계수를 사용하고, 훈련된 SOM으로부터 관측 데이터에 대한 우도(尤度, likelihood)와 사후확률을 구하는 방법을 제시한다. 훈련된 SOM들로부터 구한 사후확률과 MAP(Maximum A Posterior) 분류법을 이용하여 텍스쳐 분할을 얻는다. 그리고 문맥 정보를 이용하여 텍스쳐 분할 결과를 개선하였다. 제안 방법은 HMT(Hidden Markov Tree)을 이용한 텍스쳐 분할보다 더 우수한 결과를 보여준다. 또한 SOM과 HMTseg라고 불리는 다중스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 결과는 HMT와 HMTseg을 이용한 결과보다 더 우수한 성능을 보여준다.

지속적 호몰로지를 이용한 이미지 세그멘테이션 기법 제안 (Proposal of Image Segmentation Technique using Persistent Homology)

  • 한희일
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.223-229
    • /
    • 2018
  • 본 논문에서는 이미지에서 검출된 각 연결성분들의 위상적 지속구간 정보를 그래프 기반 이미지 세그멘테이션에 결합하여 보다 안정적인 이미지 세그멘테이션 기법을 제안한다. 이미지의 밝기 또는 색상정보 등을 이용하여 모스 함수를 정의하고 이의 레벨세트로부터 각 연결성분의 위상적 지속구간을 구한다. 각 연결성분이 생성되고 긴 지속구간을 갖는 연결성분에 적절히 병합되는 과정을 영 차원 호몰로지 군의 관점에서 설명한다. 다양한 특성을 갖는 이미지들에 대하여 짧은 지속구간을 갖는 연결성분들을 지속구간이 긴 인근 성분에 적절히 병합시키는 과정을 통하여 보다 안정적인 이미지 세그멘테이션 결과들 얻을 수 있음을 실험으로 확인한다.

멀티미디어 텔레컨퍼런스를 위한 새로운 영상 압축 기술 (A New Image Compression Technique for Multimedia Teleconferences)

  • 김용호;장종환
    • 자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.33-38
    • /
    • 1992
  • 텍스처럴 리전의 러프니스와 사람의 시각 시스템의 특성에 기초하여 세크멘테이션을 수행하는, 멀티미디어 텔레컨퍼런스를 위한 새로운 텍스처 세그멘테이션-베이스 영상 코우딩 기술을 제안한다. 세그멘테이션은, 텍스처의 영역이, 지각된 콘스탄트 인텐시티와 스무드 텍스처 및 러프 텍스처의 세가지 텍스처 클래스로 분류되도록 프랙탈 디멘전을 쓰레쉬호울딩하여 이루어진다. 각 세그먼트 바운더리와 각 텍스처 클래스를 위한 효과적인 코우딩 기술을 개발하여 높은 압축률과 좋은 영상 품질을 갖는 영상 코우딩 시스템을 달성하고, 이 기술의 코우딩 효율을 잘 확립된 기술 (디스크릿 코사인 트랜스폼(DCT) 영상 코우딩)의 코우딩 효율과 비교한다.

  • PDF

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF

Enhanced Graph-Based Method in Spectral Partitioning Segmentation using Homogenous Optimum Cut Algorithm with Boundary Segmentation

  • S. Syed Ibrahim;G. Ravi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.61-70
    • /
    • 2023
  • Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.