• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.031 seconds

3D Video Segmentation using mathematical Morphology (수리 형태론을 이용한 3차원 비디오 분할)

  • 김해룡;김남철
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.143-148
    • /
    • 1995
  • In this paper, we describe a fast 3D video segmentation method using mathematical morphology. The proposed 3D video segmentation algorithm is composed of intra-frame segmentation step and inter-frame segmentation step. In the intra-frame segmentation step, the first frame is segmented using the fast hierarchical segmentation method. Then, in the inter-frame segmentation step, the next frames are segmented using markers that are extracted from the difference of previous segmentation result and simplified present image. Experimental results show that the proposed method has more fast structure and is suitable for video segmentation.

Automated Facial Wrinkle Segmentation Scheme Using UNet++

  • Hyeonwoo Kim;Junsuk Lee;Jehyeok, Rew;Eenjun Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2333-2345
    • /
    • 2024
  • Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.

Multi-cell Segmentation of Glioblastoma Combining Marker-based Watershed and Elliptic Fitting Method in Fluorescence Microscope Image (마커 제어 워터셰드와 타원 적합기법을 결합한 다중 교모세포종 분할)

  • Lee, Jiyoung;Jeong, Daeun;Lee, Hyunwoo;Yang, Sejung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.159-166
    • /
    • 2021
  • In order to analyze cell images, accurate segmentation of each cell is indispensable. However, the reality is that accurate cell image segmentation is not easy due to various noises, dense cells, and inconsistent shape of cells. Therefore, in this paper, we propose an algorithm that combines marker-based watershed segmentation and ellipse fitting method for glioblastoma cell segmentation. In the proposed algorithm, in order to solve the over-segmentation problem of the existing watershed method, the marker-based watershed technique is primarily performed through "seeding using local minima". In addition, as a second process, the concave point search using ellipse fitting for final segmentation based on the connection line between the concave points has been performed. To evaluate the performance of the proposed algorithm, we compared three algorithms with other algorithms along with the calculation of segmentation accuracy, and we applied the algorithm to other cell image data to check the generalization and propose a solution.

Image Segmentation based on Statistics of Sequential Frame Imagery of a Static Scene (정지장면의 연속 프레임 영상 간 통계에 기반한 영상분할)

  • Seo, Su-Young;Ko, In-Chul
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.73-83
    • /
    • 2010
  • This study presents a method to segment an image, employing the statistics observed at each pixel location across sequential frame images. In the acquisition and analysis of spatial information, utilization of digital image processing technique has very important implications. Various image segmentation techniques have been presented to distinguish the area of digital images. In this study, based on the analysis of the spectroscopic characteristics of sequential frame images that had been previously researched, an image segmentation method was proposed by using the randomness occurring among a sequence of frame images for a same scene. First of all, we computed the mean and standard deviation values at each pixel and found reliable pixels to determine seed points using their standard deviation value. For segmenting an image into individual regions, we conducted region growing based on a T-test between reference and candidate sample sets. A comparative analysis was conducted to assure the performance of the proposed method with reference to a previous method. From a set of experimental results, it is confirmed that the proposed method using a sequence of frame images segments a scene better than a method using a single frame image.

Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation (영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할)

  • Roh, Seok-Beom;Ahn, Tae-Chon;Baek, Yong-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.368-374
    • /
    • 2010
  • Image segmentation is the basic step in the field of the image processing for pattern recognition, environment recognition, and context analysis. The Otsu's automatic threshold selection, which determines the optimal threshold value to maximize the between class scatter using the distribution information of the normalized histogram of a image, is the famous method among the various image segmentation methods. For the automatic threshold selection proposed by Otsu, it is difficult to determine the optimal threshold value by considering the sub-region characteristic of the image because the Otsu's algorithm analyzes the global histogram of a image. In this paper, to alleviate this difficulty of Otsu's image segmentation algorithm and to improve image segmentation capability, the original image is divided into several sub-images by using context fuzzy c-means algorithm. The proposed fuzzy Otsu threshold algorithm is applied to the divided sub-images and the several threshold values are obtained.

A Statistical Image Segmentation Method in the Hierarchical Image Structure (계층적 영상구조에서 통계적 방법에 의한 영상분할)

  • 최성진
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • In this paper, the image segmentation method based on the hierarchical pyramid image structure of reduced resolution versions of the image for solving the problems in the conventional methods is presented. This method is described the object detection and delineation by statistical approach. In the object detection method, IFSVR( Inverse-father-son variance ratio) method and FSVR(father-son variance ratio ) method are proposed for solving clustering validity problem occurred In the hierarchical pyramid image structure. An optimal object pixel Is detected at some level by this method. In the object delineation method, the iterative algorithm by top-down traversing method is proposed for moving the optimal object pixel to levels of higher resolution. Using the computer simulation, the results by the proposed statistical methods and object traversing method are investigated for the binary Image and the real image. At the results of computer simulation, the proposed methods of image segmentation based on the hierarchical pyramid Image structure seem to have useful properties and deserve consideration as a possible alternative to existing methods of image segmentation. The computation for the proposed method is required 0(log n) for n${\times}$n input image.

  • PDF

Segmentation by Contour Following Method with Directional Angle

  • Na, Cheol-Hun;Kim, Su-Yeong;Kang, Seong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.874-877
    • /
    • 2012
  • This paper proposes the new method based on contour following method with directional angle to segment the cell into the nuclei. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. this paper, improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the Thyroid Gland cell image with difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a result of experiment using features proposed in this paper, get a better segmentation rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells. The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Entropic Image Thresholding Segmentation Based on Gabor Histogram

  • Yi, Sanli;Zhang, Guifang;He, Jianfeng;Tong, Lirong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2113-2128
    • /
    • 2019
  • Image thresholding techniques introducing spatial information are widely used image segmentation. Some methods are used to calculate the optimal threshold by building a specific histogram with different parameters, such as gray value of pixel, average gray value and gradient-magnitude, etc. However, these methods still have some limitations. In this paper, an entropic thresholding method based on Gabor histogram (a new 2D histogram constructed by using Gabor filter) is applied to image segmentation, which can distinguish foreground/background, edge and noise of image effectively. Comparing with some methods, including 2D-KSW, GLSC-KSW, 2D-D-KSW and GLGM-KSW, the proposed method, tested on 10 realistic images for segmentation, presents a higher effectiveness and robustness.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.