• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.031 seconds

AAW-based Cell Image Segmentation Method (적응적 관심윈도우 기반의 세포영상 세그먼테이션 기법)

  • Seo, Mi-Suk;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.199-202
    • /
    • 2006
  • 본 논문에서는 적응적 관심윈도우에 기반한 세포영상 세그먼테이션 기법을 제안한다. 명암지도를 이용하여 초기 관심윈도우를 생성하고, 초기 관심윈도우를 쿼드-트리 분할을 통해 실제 관심영역과 유사한 크기가 될 때까지 축소한다. 이렇게 생성된 적응적 관심윈도우는 세포영상에서 배경을 제거하고 관심영역 추출의 처리시간을 줄일 수 있다. 그리고 세그먼테이션과 관심영역의 분리를 위한 영역 병합 및 제거를 수행하여 최종적으로 정밀한 관심영역을 얻어낸다. 실험에서 제안된 기법은 세포영상의 관심영역을 효과적으로 분리하여 인간 시각과 유사한 향상된 세그먼테이션 결과를 보여준다.

  • PDF

Color Image Segmentation Using Fuzzy-based Thresholding Method (그레이레블의 퍼지정보를 적용한 칼라영상분할법)

  • Kim, Dong-Jin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2558-2560
    • /
    • 2003
  • 본 논문은 퍼지논리를 통해 얻어지는 경계값을 이용한 영상분할법에 관한 연구이다. 영상분할은 퍼지인식의 핵심기술 및 많은 응용분야에서의 전처리과정에 사용되고 있어 그 중요성이 강조되고 있는 추세이다. 본 논문의 주요 관점은 영상의 그레이레블(gary level)에 관련된 불분명한 정보들을 퍼지논리를 기반으로 하여 자동적으로 경계값을 획득하는 새로운 영상 분할법을 제안함에 있다. 본 논문에서 제안된 영상분할법은 영상의 히스토그램을 이용하여 계산된 경계값과 불분명한 정도인 퍼지정보를 영상분할에 적용한 것이다. 제안된 알고리즘은 이론 및 실험을 통하여 증명하였다.

  • PDF

Localization of Mobile Robots by Full Detection of Ceiling Outlines (천장 외곽선 전체 검출에 의한 모바일 로봇의 위치 인식)

  • Kim, Young-Gyu;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1283-1289
    • /
    • 2016
  • In this paper, we propose a new localization system using ceiling outlines. We acquire the entire ceiling image by using fisheye lens camera, and extract the lines by binarization and segmentation. The optical flow algorithm is then applied to identify the ceiling region from the segmented regions. Finally we obtain the position and orientation of the robot by the center position and momentum of ceiling region. Since we use the fully detected outlines, the accuracy and reliability of the localization system is improved. The experimental result are finally presented to show the effectiveness of the proposed method.

Detection of Individual Tree Stands by a Fusion of a Multispectral High-resolution Satellite Image and Laser Scanning Data

  • Teraoka, Masaki;Setojima, Masahiro;Imai, Yasuteru;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1042-1044
    • /
    • 2003
  • A methodology of the integrating the similar color circle search of the spectral data and segmentation of the height data is developed. The method is then applied to study areas, and the results by IKONOS, LIDAR and data fusion are verified with the ground truth, and examined in terms of the accuracy. Results show that with the data fusion the accuracy are improved by about 15% in most of the study areas. The methodology for the detection of individual tree stands by data fusion is explored, and the utility of combinatorial use of the spectral and the height information is demonstrated.

  • PDF

Image Denoising Method Using Region Segmentation (영역 분할을 통한 영상 잡음 제거 기법)

  • Kim, Sung-Yong;Cheong, Hejin;Kang, Hang-Bong
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.683-686
    • /
    • 2010
  • 본 논문은 영상 내에서 영역을 분할하여 영상 잡음을 효과적으로 제거하는 기법을 제안한다. 제안한 방법을 통해 잡음 영상을 영역 분할 경우 잡음부분까지 영역 분할되는 문제가 발생하기 때문에 잡음 영상을 저대역(Low-pass) 필터를 통과함으로써 잡음을 최소화한다. 저대역 필터를 통과한 영상에서 에지를 추출하여 비정상적인 에지의 추출을 방지함으로써 영상이 가진 근본적인 에지를 정확하게 추출한다. 획득한 에지 정보를 바탕으로 각 영역간의 히스토그램의 평균 오차를 이용하여 영역을 분할한다. 분할된 영역은 각 영역별로 저대역(Low-pass) 필터를 통과시킴으로써 영역에 맞는 잡음 제거를 통해서 더욱 빠르고 효과적으로 제거한다. 본 논문의 방법은 기존의 학습을 통한 잡음 제거 방법과 다르게 학습 시간이 요구되지 않으며, Non-local Means의 방법과 다르게 큰 연산량을 요구하지 않기 때문에 유사한 성능으로 빠른 잡음 제거를 할 수 있다.

News Video Browser (뉴스 비디오 브라우저)

  • Shin, Seong-Yoon;Kang, Oh-Hyung;Kim, Hyung-Jin;Jang, Dai-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.336-337
    • /
    • 2021
  • In this paper, we propose a video browsing service that provides both video content search and video browsing through a real-time user interface on the web. We propose an efficient scene change detection method that combines an RGB color histogram and a 𝛘2 histogram for scene segmentation and key frame extraction of image sequences.

  • PDF

Pediatric RDS classification method employing segmentation-based deep learning network (영역 분할 기반 심층 신경망을 활용한 소아 RDS 판별 방법)

  • Kim, Jiyeong;Kang, Jaeha;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1181-1183
    • /
    • 2022
  • 신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.

  • PDF

Non-rigid Registration Method of Lung Parenchyma in Temporal Chest CT Scans using Region Binarization Modeling and Locally Deformable Model (영역 이진화 모델링과 지역적 변형 모델을 이용한 시간차 흉부 CT 영상의 폐 실질 비강체 정합 기법)

  • Kye, Hee-Won;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.700-707
    • /
    • 2013
  • In this paper, we propose a non-rigid registration method of lung parenchyma in temporal chest CT scans using region binarization modeling and locally deformable model. To cope with intensity differences between CT scans, we segment the lung vessel and parenchyma in each scan and perform binarization modeling. Then, we match them without referring any intensity information. We globally align two lung surfaces. Then, locally deformable transformation model is developed for the subsequent non-rigid registration. Subtracted quantification results after non-rigid registration are visualized by pre-defined color map. Experimental results showed that proposed registration method correctly aligned lung parenchyma in the full inspiration and expiration CT images for ten patients. Our non-rigid lung registration method may be useful for the assessment of various lung diseases by providing intuitive color-coded information of quantification results about lung parenchyma.

Estimation of Canopy Cover in Forest Using KOMPSAT-2 Satellite Images (KOMPSAT-2 위성영상을 이용한 산림의 수관 밀도 추정)

  • Chang, An-Jin;Kim, Yong-Min;Kim, Yong-Il;Lee, Byoung-Kil;Eo, Yan-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • Crown density, which is defined as the proportion of the forest floor concealed by tree crown, is important and useful information in various fields. Previous methods of measuring crown density have estimated crown density by interpreting aerial photographs or through a ground survey. These are time-consuming, labor-intensive, expensive and inconsistent approaches, as they involve a great deal of subjectivity and rely on the experience of the interpreter. In this study, the crown density of a forest in Korea was estimated using KOMPSAT-2 high-resolution satellite images. Using the image segmentation technique and stand information of the digital forest map, the forest area was divided into zones. The crown density for each segment was determined using the discriminant analysis method and the forest ratio method. The results showed that the accuracy of the discriminant analysis method was about 60%, while the accuracy of the forest ratio method was about 85%. The probability of extraction of candidate to update was verified by comparing the result with the digital forest map.

A Vehicle Detection Algorithm for a Lane Change (차선 변경을 위한 차량 탐색 알고리즘)

  • Ji, Eui-Kyung;Han, Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose the method and system which determines the condition for safe and unsafe lane changing. To determine the condition, first, the system sets up the Region of Interest(ROI) on the neighboring lane. Second, a dangerous vehicle is extracted during the line changing. Third, the condition is determined to wm or not by calculating the moving direction, relative distance md relative velocity. To set up the ROI, the only one side lane is detected and the interested region is expanded. Using the coordinate transformation method, the accuracy of the ROI raised. To correctly extract the vehicle on the neighboring lane, the Adaptive Background Update method and Image Segmentation method which uses the feature of the travelling road are used. The object which is extracted by the dangerous vehicle is calculated the relative distance, the relative velocity and the moving average. And then in order to ring, the direction of the vehicle and the condition for safe and unsafe is determined. As minimizes the interested region and uses the feature of the travelling road, the computational quantity is reduced and the accuracy is raised and a stable result on a travelling road images which demands a high speed calculation is showed.

  • PDF