• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.033 seconds

Topic Masks for Image Segmentation

  • Jeong, Young-Seob;Lim, Chae-Gyun;Jeong, Byeong-Soo;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3274-3292
    • /
    • 2013
  • Unsupervised methods for image segmentation are recently drawing attention because most images do not have labels or tags. A topic model is such an unsupervised probabilistic method that captures latent aspects of data, where each latent aspect, or a topic, is associated with one homogeneous region. The results of topic models, however, usually have noises, which decreases the overall segmentation performance. In this paper, to improve the performance of image segmentation using topic models, we propose two topic masks applicable to topic assignments of homogeneous regions obtained from topic models. The topic masks capture the noises among the assigned topic assignments or topic labels, and remove the noises by replacements, just like image masks for pixels. However, as the nature of topic assignments is different from image pixels, the topic masks have properties that are different from the existing image masks for pixels. There are two contributions of this paper. First, the topic masks can be used to reduce the noises of topic assignments obtained from topic models for image segmentation tasks. Second, we test the effectiveness of the topic masks by applying them to segmented images obtained from the Latent Dirichlet Allocation model and the Spatial Latent Dirichlet Allocation model upon the MSRC image dataset. The empirical results show that one of the masks successfully reduces the topic noises.

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

Segmentation and Visualization of Head MR Image Based on Structural Approach (구조적인 기법을 이용한 머리 MR 단층 영상의 조직 분류 및 가시화)

  • 권오봉;김민기
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 1999
  • Because MR(Magnetic Resonance) slice images have much information of functions about body organs, it is very effeclive for diagnoses lo analyze and visualize MR slice images. A visuahzation process is composed of medical image acquisition, preprocessmg, segmentation, inlerpolation, rendering. Segmentation and interpolation among thenl ,1re currenl hot topics because of MR slice image imperfections. This paper proposes a method for segmentalion, mlerpolation respectively and addresses 3 D-visualizmg of a head. We segmented head tissues uomg otructural knowledge of head studied by clinical experiments sequentially. We improved the dynamic elastic inlerpolation to Utilize in concave conlour. We compared the proposed segmentation method and the interpolation method with other methods.

  • PDF

A Study on the Processing Method for Improving Accuracy of Deep Learning Image Segmentation (딥러닝 영상 분할의 정확도 향상을 위한 처리방법 연구)

  • Choi, Donggyu;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.169-171
    • /
    • 2021
  • Image processing through cameras such as self-driving, CCTV, mobile phone security, and parking facilities is being used to solve many real-life problems. Simple classification is solved through image processing, but it is difficult to find images or in-image features of complexly mixed objects. To solve this feature point, we utilize deep learning techniques in classification, detection, and segmentation of image data so that we can think and judge closely. Of course, the results are better than just image processing, but we confirm that the results judged by the method of image segmentation using deep learning have deviations from the real object. In this paper, we study how to perform accuracy improvement through simple image processing just before outputting the output of deep learning image segmentation to increase the precision of image segmentation.

  • PDF

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Efficient Implementation Method Of Depth Image Segmentation In SoC System (SoC 시스템에서의 깊이 영상 분할을 위한 효율적인 설계 구성 방법)

  • Sung, Jimok;Kim, Bongsung;Kang, Bongsoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • This paper propose implementation method of SoC system for efficient depth image segmentation. SoC systems are combined platform in the form of the Software and Hardware IP. In order to perform effectively, the user to determine the operation of the configuration of each part. In this paper, we implemented a segmentation of depth images taken by the infrared sensor at APU of SoC system. The proposed method efficiently implements high performance and low power in SoC system. Proposed method that using software parts of SoC system is capable to use at several depth image processing systems.

Cleaning Method of Impulse Noise Using Mean Shift Segmentation (평균이동 분할을 이용한 임펄스 잡음제거)

  • Kwon, Young-Man;Lim, Myung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.163-168
    • /
    • 2009
  • In this paper, We proposed the efficient method of cleaning impulse noise using mean shift segmentation. This method do its job for the pixel which is identified as impulse noise using mean shift segmentation instead of all pixel of image by the existing method. we found that the quality of image is improved by measuring the sum of square error in result image and impulse noise is cleaned efficiently by doing experiment.

  • PDF

Blotch Detection and Removal in Old Film Sequences

  • Takahiro-Saito;Takashi-Komatsu;Toru-Iwama;Tomobisa-Hoshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.16.2-21
    • /
    • 1998
  • Old movies are often corrupted by randomly located blotches and scratches. In this paper were present an efficient method for detection and removal of these distortions. The presented method is composed of two separate steps: the detection process and the restoration process. In the detection process, blotch locations are detected through global motion segmentation, the sequential approach to motion segmentation, a robust model-fit criterion and so on, we form the algorithm for the algorithm for the global motion segmentation tuned to the blotch detection problem. In the restoration process, the missing data of the detected blotch areas are temporally extrapolated from the corresponding image areas at the preceding or the succeeding image frame with considering the global motion segmentation results. We apply the presented method to moving image sequences distorted by artificial blotches. The method works very well and provides a subjective improvement of picture quality.

Colorization-based Coding By Using Watershed Segmentation For Optimization

  • Wang, Ping;Lee, Byung-Gook
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.40-42
    • /
    • 2012
  • Colorization is a method using computer to add color to a black and white image automatically. The input is a grayscale image and some representative pixels (RPs). The RPs contain the color information for the image, and it indicates each region's color information. Colorization-based coding is a novel way for lossy image compression, it decodes a color image to get grayscale image and extracts RPs from the image. Because RPs decides the region's color and we also want small data size for image compression, form this viewpoint the paper proposes a way to get better and fewer RPs based on watershed segmentation. According to the segmentation result we also improve the original chrominance blending colorization method to save decode time and get better reconstruct image.

  • PDF

An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition (물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정)

  • Kim, Dong-Gi;Lee, Seong-Gyu;Lee, Moon-Wook;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.