• 제목/요약/키워드: image security system

검색결과 508건 처리시간 0.02초

탬플릿 매칭과 코검출 기반 얼굴 위장 탐지 시스템 (Face Disguise Detection System Based on Template Matching and Nose Detection)

  • 양재준;조성원;이기성
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.100-107
    • /
    • 2012
  • 최근 지능형 범죄가 늘면서 첨단 보안 기술에 대한 요구가 점차 늘어나고 있다. 현재까지 보고된 위장한 얼굴의 검출방법은 실용화를 위하여 정확도 개선이 요구된다. 본 논문에서는 사람의 얼굴에 대하여 템플릿 매칭을 통한 유사도와 아다부스트를 사용한 얼굴 위장판별 시스템을 제안한다. 제안된 시스템은 먼저 다중 스케일 가버특징 벡터를 기반으로 눈의 위치를 찾은 후 템플릿 매칭을 통해서 눈에 대한 유사도를 측정하여 선글라스 착용여부를 판단하고 아다부스트를 사용한 코의 검출을 통하여 마스크 착용 여부를 판단한다. 실험을 통하여 본 논문에서 제안한 방법이 더욱 신뢰성 높은 위장 판별 시스템임을 확인하였다.

부분공간 기반 특징 추출기의 조명 변인에 대한 얼굴인식 성능 분석 (Face Recognition Evaluation of an Illumination Property of Subspace Based Feature Extractor)

  • 김광수;부덕희;안정호;곽수영;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.681-687
    • /
    • 2007
  • 오늘날 개인의 정보 보호 및 신분 확인을 위하여 생체 인식 분야 중에서 사람의 얼굴 인식기술이 많이 사용되고 있지만 조명, 자세, 표정 변화로 인하여 얼굴 인식의 성능 저하를 일으키는 문제가 있다. 본 논문에서는 얼굴 인식 결과에 큰 영향을 주는 요소인 조명 변화에 초점을 맞춰 D-LDA(Direct-Linear Disciminant Analysis)가 다른 기법들에 비해 덜 민감하게 수행할 수 있는 성질을 지녔음을 밝히 고자 한다. 측면광과 역광등의 조명 변화와 농도의 변화를 고려하여 조명 변화를 갖는 테스트를 갖는 ORL, Yale, 포항공대 데이타베이스를 여러 특징 추출 알고리즘에 적용함으로써 클래스, 학습 데이타 그리고 테스트 데이타 수가 각기 다른 세 종류의 데이타베이스에서 모두 D-LDA가 적은 학습 데이터에서도 조명 변인에 가장 덜 민감하게 반응하는 좋은 인식 성능을 갖는 성질을 지녔음을 보여준다.

합성곱 오토인코더를 이용한 이상거동 선박 식별 (Detection of Abnormal Vessel Trajectories with Convolutional Autoencoder)

  • 손준형;장준건;최봉완;김경택
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.190-197
    • /
    • 2020
  • Recently there was an incident that military radars, coastal CCTVs and other surveillance equipment captured a small rubber boat smuggling a group of illegal immigrants into South Korea, but guards on duty failed to notice it until after they reached the shore and fled. After that, the detection of such vessels before it reach to the Korean shore has emerged as an important issue to be solved. In the fields of marine navigation, Automatic Identification System (AIS) is widely equipped in vessels, and the vessels incessantly transmits its position information. In this paper, we propose a method of automatically identifying abnormally behaving vessels with AIS using convolutional autoencoder (CAE). Vessel anomaly detection can be referred to as the process of detecting its trajectory that significantly deviated from the majority of the trajectories. In this method, the normal vessel trajectory is gridded as an image, and CAE are trained with images from historical normal vessel trajectories to reconstruct the input image. Features of normal trajectories are captured into weights in CAE. As a result, images of the trajectories of abnormal behaving vessels are poorly reconstructed and end up with large reconstruction errors. We show how correctly the model detects simulated abnormal trajectories shifted a few pixel from normal trajectories. Since the proposed model identifies abnormally behaving ships using actual AIS data, it is expected to contribute to the strengthening of security level when it is applied to various maritime surveillance systems.

Generalized Hardware Post-processing Technique for Chaos-Based Pseudorandom Number Generators

  • Barakat, Mohamed L.;Mansingka, Abhinav S.;Radwan, Ahmed G.;Salama, Khaled N.
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.448-458
    • /
    • 2013
  • This paper presents a generalized post-processing technique for enhancing the pseudorandomness of digital chaotic oscillators through a nonlinear XOR-based operation with rotation and feedback. The technique allows full utilization of the chaotic output as pseudorandom number generators and improves throughput without a significant area penalty. Digital design of a third-order chaotic system with maximum function nonlinearity is presented with verified chaotic dynamics. The proposed post-processing technique eliminates statistical degradation in all output bits, thus maximizing throughput compared to other processing techniques. Furthermore, the technique is applied to several fully digital chaotic oscillators with performance surpassing previously reported systems in the literature. The enhancement in the randomness is further examined in a simple image encryption application resulting in a better security performance. The system is verified through experiment on a Xilinx Virtex 4 FPGA with throughput up to 15.44 Gbit/s and logic utilization less than 0.84% for 32-bit implementations.

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • 한국멀티미디어학회논문지
    • /
    • 제16권10호
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

모바일 OTP의 패스워드 Seed 확장을 위한 지문 중첩 기법 (Fingerprint overlay technique of mobile OTP to extent seed of password)

  • 김남호;황부현
    • 한국항행학회논문지
    • /
    • 제16권2호
    • /
    • pp.375-385
    • /
    • 2012
  • 지문은 바이오매트릭스를 이용한 대표적인 신분인증 방법이다. 패스워드 방법에 비하여 도용이나 분실의 위험성이 적은 특징이 있다. 이러한 특징으로 OTP 생성에 지문을 이용한 시도를 하게 되었다. 본 논문은 개발된 OTP 시스템의 프로토타입을 소개하며, 지문을 이용한 OTP 시스템은 와상형 지문의 특징점이 적게 추출된다는 단점을 극복하는 방법을 제안한다. 적은 특징점은 OTP 세션을 위한 많은 암호화 키를 생성하지 못한다. 제안된 방법은 간단하게 동일한 지문을 겹침으로써, 편의를 갖는 중첩된 지문의 많은 특징점이 추가된다. 이로 인하여, 지문을 이용한 OTP의 보안성과 패스워드 추측에 대한 임의성이 강화된다.

유니버설 디자인에 기반을 둔 새로운 그래픽 패스워드 기법 (A New Graphical Password Scheme Based on Universal Design)

  • 양기철;김황용
    • 디지털융복합연구
    • /
    • 제12권5호
    • /
    • pp.231-238
    • /
    • 2014
  • 텍스트 기반 패스워드 인증의 문제점을 해결하기 위해서 이미지를 사용하는 그래픽 패스워드가 발전 하였다. 기본적으로 그래픽 패스워드는 화면에 보이는 이미지 위의 정확한 점의 위치를 순서대로 선택(클릭)하여 인증을 처리하는 방식이다. 이러한 기존의 그래픽 패스워드 방식은 화면상의 정확한 지점을 선택하여 클릭하지 못하면 인식에 실패한다. 본 논문에서는 이러한 단점을 개선한 신 개념의 그래픽 패스워드 방식인 PassPositions를 소개한다. PassPositions는 지금까지의 그래픽 패스워드 방식에서 사용하지 않았던 상대위치를 패스워드 생성에 사용한 신개념의 그래픽 패스워드 기법이다. PassPositions는 유니버설 디자인에 기반을 둔 그래픽 패스워드 기법으로 사용자의 신체적 조건에 관계없이 모두가 편리하게 사용할 수 있다.

센서 퓨전을 통한 인공지능 4족 보행 애완용 로봇 (An Intelligence Embedding Quadruped Pet Robot with Sensor Fusion)

  • 이래경;박수민;김형철;권용관;강석희;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.314-321
    • /
    • 2005
  • In this paper an intelligence embedding quadruped pet robot is described. It has 15 degrees of freedom and consists of various sensors such as CMOS image, voice recognition and sound localization, inclinometer, thermistor, real-time clock, tactile touch, PIR and IR to allows owners to interact with pet robot according to human's intention as well as the original features of pet animals. The architecture is flexible and adopts various embedded processors for handling sensors to provide modular structure. The pet robot is also used for additional purpose such like security, gaming visual tracking, and research platform. It is possible to generate various actions and behaviors and to download voice or music files to maintain a close relation of users. With cost-effective sensor, the pet robot is able to find its recharge station and recharge itself when its battery runs low. To facilitate programming of the robot, we support several development environments. Therefore, the developed system is a low-cost programmable entertainment robot platform.

Anthropomorphic Animal Face Masking using Deep Convolutional Neural Network based Animal Face Classification

  • Khan, Rafiul Hasan;Lee, Youngsuk;Lee, Suk-Hwan;Kwon, Oh-Jun;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제22권5호
    • /
    • pp.558-572
    • /
    • 2019
  • Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities. Anthropomorphic animal face masking is the process by which human characteristics are plotted on the animal kind. In this research, we are proposing a compact system which finds the resemblance between a human face and animal face using Deep Convolutional Neural Network (DCNN) and later applies morphism between them. The whole process is done by firstly finding which animal most resembles the particular human face through a DCNN based animal face classification. And secondly, doing triangulation based morphing between the particular human face and the most resembled animal face. Compared to the conventional manual Control Point Selection system using an animator, we are proposing a Viola-Jones algorithm based Control Point selection process which detects facial features for the human face and takes the Control Points automatically. To initiate our approach, we built our own dataset containing ten thousand animal faces and a fourteen layer DCNN. The simulation results firstly demonstrate that the accuracy of our proposed DCNN architecture outperforms the related methods for the animal face classification. Secondly, the proposed morphing method manages to complete the morphing process with less deformation and without any human assistance.

딥 클러스터링을 이용한 비정상 선박 궤적 식별 (An Application of Deep Clustering for Abnormal Vessel Trajectory Detection)

  • 박헌제;이준우;경지훈;김경택
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.169-176
    • /
    • 2021
  • Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation. We first generate gridded trajectory images by mapping the raw vessel trajectories into two dimensional matrix. Based on the gridded image input, we test the proposed model along with the other deep autoencoder-based models for the abnormal trajectory data generated through rotation and speed variation from normal trajectories. We show that the proposed model improves detection accuracy for the generated abnormal trajectories compared to the other models.