• Title/Summary/Keyword: image rectification

Search Result 95, Processing Time 0.029 seconds

Rectification of Document Image on Smartphone Using MSER-b Binarization (MSER-b 이진화 기법을 이용한 스마트폰 문서 이미지 보정 기법)

  • Yu, Young-Jung;Moon, Sang-Ho;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.201-207
    • /
    • 2015
  • The smartphone with camera can easily generate an image instead of a scanner. However the document image through a smartphone can have distortions related rotation or perspective. In this paper, we proposed a method to generate the document image in that distortions are reduced from the captured document image through a smartphone. For this, the original document image through a smartphone is preprocessed using the MSER-b technique to reduce the light effect. Then, the text area contour is extracted using the characteristics of the document image. Lastly, rotation or perspective distortions are reduced using the extracted text area contour. For experiments, the proposed method is compared two other products. Through experiments, we show that the distortions within the captured document image through smartphone can be effectively reduced.

View synthesis in uncalibrated images (임의 카메라 구조에서의 영상 합성)

  • Kang, Ji-Hyun;Kim, Dong-Hyun;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.437-438
    • /
    • 2006
  • Virtual view synthesis is essential for 3DTV systems, which utilizes the motion parallax cue. In this paper, we propose a multi-step view synthesis algorithm to efficiently reconstruct an arbitrary view from limited number of known views of a 3D scene. We describe an efficient image rectification procedure which guarantees that an interpolation process produce valid views. This rectification method can deal with all possible camera motions. The idea consists of using a polar parameterization of the image around the epipole. Then, to generate intermediate views, we use an efficient dense disparity estimation algorithm considering features of stereo image pairs. Main concepts of the algorithm are based on the region dividing bidirectional pixel matching. The estimated disparities are used to synthesize intermediate view of stereo images. We use computer simulation to show the result of the proposed algorithm.

  • PDF

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.

An Interactive Perspective Scene Completion Framework Guided by Complanate Mesh

  • Hao, Chuanyan;Jin, Zilong;Yang, Zhixin;Chen, Yadang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.183-200
    • /
    • 2020
  • This paper presents an efficient interactive framework for perspective scene completion and editing tasks, which are available largely in the real world but rarely studied in the field of image completion. Considering that it is quite hard to extract perspective information from a single image, this work starts from a friendly and portable interactive platform to obtain the basic perspective data. Then, in order to make this interface less sensitive, easier and more flexible, a perspective-rectification based correction mechanism is proposed to iteratively update the locations of the initial points selected by users. At last, a complanate mesh is generated by the geometry calculations from these corrected initial positions. This mesh must approximate the perspective direction and the structure topology as much as possible so that the filling process can be conducted under the constraint of the perspective effects of the original image. Our experiments show the results with good qualities and performances, and also demonstrate the validity of our approaches by various perspective scenes and images.

Automated Image Alignment and Monitoring Method for Efficient Stereoscopic 3D Contents Production (스테레오스코픽 3D 콘텐츠 제작의 효율성 향상을 위한 자동 영상정렬 및 모니터링 기법)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2014
  • Minimization of visual fatigue is important for production of high quality stereoscopic 3D contents. Vertical disparity of stereo images occurred during contents production is considered as the main factor of visual fatigue. To ensure correct stereoscopy vertical disparity needs to be eliminated. In this paper, a method for automated image alignment was proposed for Stereoscopic 3D contents generation and post-processing steps. The proposed method consists of two parts: rectification for image alignment and camera motion detection. The proposed method showed that its rectification performance was the most superior among the existing methods tested and that camera motion detection had a success rate of 98.35%. Through these evaluations, we confirmed that the proposed method can be effectively applied to 3D contents production.

Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production (고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-42
    • /
    • 2013
  • This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

Rectification of Perspective Text Images on Rectangular Planes

  • Le, Huy Phat;Madhubalan, Kavitha;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Natural images often contain useful information about the scene such as text or company logos placed on a rectangular shaped plane. The 2D images captured from such objects by a camera are often distorted, because of the effects of the perspective projection camera model. This distortion makes the acquisition of the text information difficult. In this study, we detect the rectangular object on which the text is written, then the image is restored by removing the perspective distortion. The Hough transform is used to detect the boundary lines of the rectangular object and a bilinear transformation is applied to restore the original image.

Precise Rectification of Misaligned Stereo Images for 3D Image Generation (입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정)

  • Kim, Jae-In;Kim, Tae-Jung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2012
  • The stagnant growth in 3D market due to 3D movie contents shortage is encouraging development of techniques for production cost reduction. Elimination of vertical disparity generated during image acquisition requires heaviest time and effort in the whole stereoscopic film-making process. This matter is directly related to competitiveness in the market and is being dealt with as a very important task. The removal of vertical disparity, i.e. image rectification has been treated for a long time in the photogrammetry field. While computer vision methods are focused on fast processing and automation, photogrammetry methods on accuracy and precision. However, photogrammetric approaches have not been tried for the 3D film-making. In this paper, proposed is a photogrammetry-based rectification algorithm that enable to eliminate the vertical disparity precisely by reconstruction of geometric relationship at the time of shooting. Evaluation of proposed algorithm was carried out by comparing the performance with two existing computer vision algorithms. The epipolar constraint satisfaction, epipolar line accuracy and vertical disparity of result images were tested. As a result, the proposed algorithm showed excellent performance than the other algorithms in term of accuracy and precision, and also revealed robustness about position error of tie-points.

The Study of New Image Enhancement Algorithm (새로운 이미지 개선 알고리즘에 관한 연구)

  • Yu, Sung-Jae;Shin, Ho-Chul;Kim, Young-Sup;Rhew, Sang-Burm;Jang, Ji-Geun;Gong, Myung-Seon;Chang, Ho-Jung;Lee, Jun-Young;Lee, Young-Kwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.15-18
    • /
    • 2006
  • This paper presents a optimizing algorithm getting through analyzing a image improvement algorithm using retinex theory. Improving a existing retinex theory's slow process speed, our proposal is that it controls a small filter size of surrounding function by comparing with original algorithm. So slow process speed decreased drastically. For filling a short of lighting information by small filter, we also selected gray image as a forth channel. Using the color constancy, we got fast process time like linear color correction and could do comfortable auto color rectification according to other images.

  • PDF

Satellite Image Processing Software for Value-Added Products

  • Lee, Hae-Yeoun;Park, Won-Kyu;Kim, Seung-Bum;Kim, Tae-Jung;Yoon, Tae-Hun;Shin, Dong-Seok;Lee, Heung-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.339-348
    • /
    • 1999
  • To extract value-added products which are important in scientific area and practical life, e.g. digital elevation models, ortho-rectified images and geometric corrected images, Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed a satellite image processing software called "Valadd-Pro". In this paper, "Valadd-Pro" software is briefly introduced and its main components such as precise geometric correction, ortho-rectification and digital elevation model extraction component are described. The performance of "Valadd-Pro" software was assessed on 10m resolution 6000 $\times$ 6000 SPOT panchromatic images (60km $\times$ 60km) using ground control points from GPS measurements. The height accuracy was measured by comparing our results with 100m resolution $DTEDs^{1)}$ produced by USGS and 60m resolution DEMs generated from digitized contours produced by National Geography Institute. Also, to show the superior performance of "Valadd-Pro" software, we compared the performance with that of commonly used PCI$\circledR$ commercial software. Based on the results, the geometric correction of "Valadd-Pro" software needs fewer ground control points than that of PCI$\circledR$ software and the ortho-rectification of "Valadd-Pro" software shows similar performance to that of PCI$\circledR$ software. In the digital elevation model extraction, "Valadd-Pro" software is two times more accurate and four times faster than PCI$\circledR$ software.ccurate and four times faster than PCI$\circledR$ software.