• Title/Summary/Keyword: image projection

Search Result 1,020, Processing Time 0.024 seconds

Analysis of the cause by Pre Exposure Tube Voltage and Actual Exposure Tube Voltage deviation in Mammography Examination (유방 촬영검사에서 사전조사 관전압과 실제조사 관전압 편차에 따른 원인 분석)

  • Cho, Ji-Hwan;Lee, Hyo-Yeong;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.79-85
    • /
    • 2017
  • The purpose of this study is to investigate the cause analysis according to the difference between the pre exposure tube voltage and actual exposure tube voltage in mammography in connection with breast pressure thickness, breast size and body mass index and to find the improvement. The study tracked 377 women age 40 and older among the mammography examiners conducted by the National Health Insurance Corporation. It was analyzed that breast pressure thickness, breast size and body mass index according to the difference between the pre exposure tube voltage and actual exposure tube voltage among the parameters of dose report been sent to the picture archiving communication system with reference to the image with cranio-caudal projection in mammography. As are result, it shows that the thicker the breast thickness, smaller the breast size and lower body mass index, the higher the difference of tube voltage. In conclusion, the minimum tube voltage of mammography machine should be reset in order to set the tube voltage according to breast pressure thickness and breast size that are suitable for our country in mammography, in addition, it was considered that radiologist should make an effort to reduce radiation exposure and make a good quality image with reducing the difference of mammography condition by making a correct exposure condition in case of examining the patients with thin breast pressure and small breast size.

3D Reconstruction of an Indoor Scene Using Depth and Color Images (깊이 및 컬러 영상을 이용한 실내환경의 3D 복원)

  • Kim, Se-Hwan;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • In this paper, we propose a novel method for 3D reconstruction of an indoor scene using a multi-view camera. Until now, numerous disparity estimation algorithms have been developed with their own pros and cons. Thus, we may be given various sorts of depth images. In this paper, we deal with the generation of a 3D surface using several 3D point clouds acquired from a generic multi-view camera. Firstly, a 3D point cloud is estimated based on spatio-temporal property of several 3D point clouds. Secondly, the evaluated 3D point clouds, acquired from two viewpoints, are projected onto the same image plane to find correspondences, and registration is conducted through minimizing errors. Finally, a surface is created by fine-tuning 3D coordinates of point clouds, acquired from several viewpoints. The proposed method reduces the computational complexity by searching for corresponding points in 2D image plane, and is carried out effectively even if the precision of 3D point cloud is relatively low by exploiting the correlation with the neighborhood. Furthermore, it is possible to reconstruct an indoor environment by depth and color images on several position by using the multi-view camera. The reconstructed model can be adopted for interaction with as well as navigation in a virtual environment, and Mediated Reality (MR) applications.

  • PDF

Facial Feature Detection and Facial Contour Extraction using Snakes (얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출)

  • Lee, Kyung-Hee;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.731-741
    • /
    • 2000
  • This paper proposes a method to detect a facial region and extract facial features which is crucial for visual recognition of human faces. In this paper, we extract the MER(Minimum Enclosing Rectangle) of a face and facial components using projection analysis on both edge image and binary image. We use an active contour model(snakes) for extraction of the contours of eye, mouth, eyebrow, and face in order to reflect the individual differences of facial shapes and converge quickly. The determination of initial contour is very important for the performance of snakes. Particularly, we detect Minimum Enclosing Rectangle(MER) of facial components and then determine initial contours using general shape of facial components within the boundary of the obtained MER. We obtained experimental results to show that MER extraction of the eye, mouth, and face was performed successfully. But in the case of images with bright eyebrow, MER extraction of eyebrow was performed poorly. We obtained good contour extraction with the individual differences of facial shapes. Particularly, in the eye contour extraction, we combined edges by first order derivative operator and zero crossings by second order derivative operator in designing energy function of snakes, and we achieved good eye contours. For the face contour extraction, we used both edges and grey level intensity of pixels in designing of energy function. Good face contours were extracted as well.

  • PDF

Analysis of Image Quality According to Imaging Parameters in Digital Tomosynthesis (디지털 단층영상합성장치의 영상획득 조건에 따른 화질 분석)

  • Lee, Dahye;Lee, Seungwan;Kim, Burnyoung;Yim, Dobin;Nam, Kibok;Cho, Jeonghyo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.477-486
    • /
    • 2020
  • The purpose of this study was to evaluate the effects of reconstruction filters, X-ray source trajectories and intervals in the quality of digital tomosynthesis (DT) images, and the results was clinically validated. The filtered back-projection was implemented by using Ramp, Shepp-Logan, Cosine, Hamming, Hann and Blackman filters, and the X-ray source trajectories were simulated with 1 × 36, 2 × 18, 3 × 12, 4 × 9 and 6 × 6 arrays. The X-ray source intervals were 5, 10, 20, 30 and 40 mm. The depth resolution, spatial resolution and noise of DT image were evaluated by measuring artifact spread function (ASF), full width at half maximum (FWHM) and signal-to-noise ratio (SNR), respectively. The results showed that the spatial resolution and noise properties of DT images were maximized by the Ramp and Blackman filters, respectively, and the depth resolution and noise properties of the DT images obtained with a 1 × 36 X-ray source trajectory were superior to the other trajectories. The depth resolution and noise properties of DT images improved with an increase of X-ray source intervals, and the high X-ray source intervals degraded the spatial resolution of DT images. Therefore, the characteristics of DT images are highly dependent on reconstruction filters, X-ray source trajectories and intervals, and it is necessary to use optimal imaging parameters in accordance with diagnostic purpose.

Analysis of Images According to the Fluid Velocity in Time-of-Flight Magnetic Resonance Angiography, and Contrast Enhancement Angiography

  • Kim, Eng-Chan;Heo, Yeong-Cheol;Cho, Jae-Hwan;Lee, Hyun-Jeong;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.185-191
    • /
    • 2014
  • In this study we evaluated that flow rate changes affect the (time of flight) TOF image and contrast-enhanced (CE) in a three-dimensional TOF angiography. We used a 3.0T MR System, a nonpulsatile flow rate model. Saline was used as a fluid injected at a flow rate of 11.4 cm/sec by auto injector. The fluid signal strength, phantom body signal strength and background signal strength were measured at 1, 5, 10, 15, 20 and 25-th cross-section in the experienced images and then they were used to determine signal-to-noise ratio and contrast-to-noise ratio. The inlet, middle and outlet length were measured using coronal images obtained through the maximum intensity projection method. As a result, the length of inner cavity was 2.66 mm with no difference among the inlet, middle and outlet length. We also could know that the magnification rate is 49-55.6% in inlet part, 49-59% in middle part and 49-59% in outlet part, and so the image is generally larger than in the actual measurement. Signal-to-noise ratio and contrast-to-noise ratio were negatively correlated with the fluid velocity and so we could see that signal-to-noise ratio and contrast-to-noise ratio are reduced by faster fluid velocity. Signal-to-noise ratio was 42.2-52.5 in 5-25th section and contrast-to-noise ratio was from 34.0-46.1 also not different, but there was a difference in the 1st section. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s. Consequently, 3D TOF MRA tests show that the faster fluid velocity decreases the signal-to-noise ratio and contrast-to-noise ratio, and basically it can be determined that 3D TOF MRA and 3D CE MRA are displayed larger than in the actual measurement.

Development of a Computer Program for Stand Spatial Structure Analysis (임분(林分) 공간구조(空間構造) 분석(分析)을 위한 컴퓨터 프로그램의 개발(開發))

  • Shin, Man Yong;Oh, Jung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.389-399
    • /
    • 1999
  • This study was conducted to develop an application software, SIDAS3D(Stand Inventory Data Analysis System for 3 Dimensional Representation), of which the purpose of development is to make it easier to analyze and display the 3D spatial structure of a forest stand, based on the data such as tree position, species, DBH, height, clear length of individual trees, and crown width. This program has a statistical analysis function for stand attributes per hectare and displays simple graphs of stand statistics such as the distribution of diameters, heights, and volumes. It also has two additional functions, of which one is to display the 3D image of stand structure and the other is to display the image of crown projection. In addition, this program provides an imaginary treatment simulation function, which can visually confirm the suitability of silvicultural treatments on computers. To test the precision and reliability of SIDAS3D, data obtained by the precision forest inventory method were used. Statistical analysis ability of SIDAS3D was compared with that of SAS. And its representational ability was compared with that of TreeDraw. According to the verification, SIDAS3D was superior to SAS and TreeDraw in both the data processing time and the interpretative ability of results. It was concluded that SIDAS3D could be used to help users efficiently make decisions for appropriate silvicultural treatments and rational management plans because it has analysis functions providing various valuable information.

  • PDF

Color Correction for Projected Image on Light Colored Screen using a Still Camera (카메라를 사용한 유색 스크린에 투영된 영상의 색 보정 기법)

  • Kim, Dae-Chul;Lee, Tae-Hyoung;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • Recently, the use of portable projector expands applications to meeting at fields. Accordingly, the projection is not always guaranteed on white screen, causing some color distortion. Several algorithms have been suggested to correct the projected color on the light colored screen. These have limitation on the use of measurement equipment which can't bring always. In this paper, color correction method using general still camera as convenient measurement equipment is proposed to match the colors between on white and colored screens. A patch containing 9 ramps of each channel are firstly projected on white and colored screens, then captured by the camera, respectively, Next, digital values are obtained by the captured image for each ramp patch on both screens, resulting in different values to the same patch. After that, we check which ramp patch on colored screen has the same digital value on white screen, repeating this procedure for all ramp patches. The difference between corresponding ramp patches reveals the quantity of color shift. Then, color correction matrix is obtained by regression method using matched values. In the experimental results, the proposed method gives better color correction on the objective and subjective evaluation than the previous methods.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.

3D Medical Image Segmentation Using Region-Growing Based Tracking (영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법)

  • Ko S.;Yi J.;Lim J.;Ra J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.239-246
    • /
    • 2000
  • In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.

  • PDF

Study on the Repeatability and Reproductivity of a Moire Body Shape Analyser (모아레를 이용한 체형분석의 반복성 재현성에 관한 연구)

  • Lee, Dong-Yup;Park, Young-Bae;Oh, Hwan-Sub
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.10 no.2
    • /
    • pp.121-131
    • /
    • 2006
  • Background : As each human has a look in the face of oneself, he or she has a look of him or herself in the shape of the body also. And for the shape of the body which gives a big clue in diagnosis in musculoskeletal disorders. Therefor many means are used and developed for diagnosis through body shape or posture analysis for musculoskeletal disorders. X-ray, CT, MRI has been used for diagnosis through image in this way to tell about the inside of the human body. On the other side, moire topography was used for information about the exterior of the human body, but yet only minimal information such as the number of contour lines in each side was available. Therefor there were a few studies to use moire topography or other methods to get information about the surface of the human body in numeric values. The instrument used in this study which is a laser projection moire, is another trial to get numeric data about the surface of the human body. The instrument is composed of laser projector and a computer software to recompose and analyse the image data into depth, height, angle and length. Objectives : The study was focused on whether the instrument is reliable for clinic use, and to seek the proper environment and posture for the examination, and among the data the software provides, which items are more reliable and useful. Methods : For reproductivity and repeatability, 4 testers tested 2 persons. And to how if the body shape changes according to the posture and which posture gives the most reliable data, the test was performed in 6 different positions. Results : Result, the instrument showed sufficient repeatability and reproductivity for clinical use. And among the items the software provides, the length of the back, the angle of the back in the sagittal and coronal plane showed reliable results. And there was difference in the results according to the posture, and Therefor, in following studies using this instrument or similar type of posture analysing instruments, the length of the back, the angle of the back in the sagittal and coronal plane could be reliable item to use.

  • PDF