• Title/Summary/Keyword: image probing

Search Result 24, Processing Time 0.028 seconds

Probing of Concrete Specimens using Ground Penetration Radar

  • Rhim, HongChul
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.262-264
    • /
    • 2004
  • Ground Penetrating Radar (GPR) has been used to image inside concrete specimens embedded with steel bars and delamination. An imaging algorithm has been developed to improve measurement output generated from a commercial radar system. For the experiments, laboratory size concrete specimens are made with the dimensions of $1,000mm(W){\times}1,000mm(L){\times}250mm(D)$. The results have shown improved output of the radar measurements compared to commercially available processing methods.

Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases (물리탐사에 기초한 대수층 특성화 및 적용 사례 분석)

  • Jeong, Juyeon;Kim, Bitnarae;Song, Seo Young;Joung, In Seok;Song, Sung-Ho;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.1-23
    • /
    • 2022
  • For its essential importance as a resource, sustainable development of groundwater has been major research interests for many decades. Conventional characterization of aquifer and groundwater has relied on borehole data from observation well. Although borehole data provide useful information on yield and flow of groundwater, it is often difficult and sometimes costly to estimate the spatial distribution of groundwater in entire aquifer. Geophysical probing is an alternative techique that provides such information due to its capability to image subsurface structures as well as to delineate spatial distribution of hydraulic parameters. This study presents various technical information about geophysical probing to estimate main characteristics of aquifer for groundwater exploitation. Subsequently, we analyzed representative cases, in which geophysical methods were applied to identify the location of the groundwater, classify freshwater and brine, derive hydraulic constants, and monitor groundwater.

Improved accuracy in periodontal pocket depth measurement using optical coherence tomography

  • Kim, Sul-Hee;Kang, Se-Ryong;Park, Hee-Jung;Kim, Jun-Min;Yi, Won-Jin;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • Purpose: The purpose of this study was to examine whether periodontal pocket could be satisfactorily visualized by optical coherence tomography (OCT) and to suggest quantitative methods for measuring periodontal pocket depth. Methods: We acquired OCT images of periodontal pockets in a porcine model and determined the actual axial resolution for measuring the exact periodontal pocket depth using a calibration method. Quantitative measurements of periodontal pockets were performed by real axial resolution and compared with the results from manual periodontal probing. Results: The average periodontal pocket depth measured by OCT was $3.10{\pm}0.15mm$, $4.11{\pm}0.17mm$, $5.09{\pm}0.17mm$, and $6.05{\pm}0.21mm$ for each periodontal pocket model, respectively. These values were similar to those obtained by manual periodontal probing. Conclusions: OCT was able to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be established regardless of the position of periodontal pocket in the OCT image.

Improved Progressive Photon Mapping Using Photon Probing (포톤 탐사법을 이용한 개선된 점진적 포톤 매핑)

  • Lee, Sang-Gil;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • Photon mapping is a traditional global illumination method using many photons emitted from the light source for photo-realistic rendering. However, this method needs a lot of resources to perform tracing of millions of photons. Progressive photon mapping solves this problem. Typical progressive photon mapping performs ray tracing at first to find the hit points on diffuse surface of objects. Next, light source repeatedly emits a small number of photons in photon tracing pass, and power of photons in each sphere that has a fixed radius with the hit points in the center is accumulated. This method requires less resources than previous photon mapping, but it spends much time for gathering enough photons since each of photons progresses through a random direction and rendering high quality image. To improve the method, we propose photon probing that calculates variance of photons in the sphere and controls radius of sphere. In addition, we apply cone filter in radiance estimation step for reducing aliasing at the edges in result image.

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J.;Makita, Shuichi;Yamanari, Masahiro;Myllyla, Risto A.;Yasuno, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

Measurement of In- plane Displacement by Speckle Photography and Image Processing (스펙클 포토그라피와 화상처리(畵像處理)에 의(依)한 면내변위(面內變位) 계측(計測))

  • Han, Eung-Kyo;Sumi, Seinosuke;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.6 no.2
    • /
    • pp.37-45
    • /
    • 1987
  • Speckle photography is a very useful method for measuring in-plane surface displacement. In its basic form, the object to be studied is illuminated with a divergent laser beam, and a double exposure photograph of the object is recorded, on a fine-grain film or plate, before and after the object is deformed, The magnitude and the direction of the displacement can then be obtained by measuring the spacing and the direction of the Young's fringe, which is produced by probing the developed negative with an unexpaned laser beam, and consists of a pattern of parallel equi-spaced dark bands. In this paper, a hybrid optical and electronic image processing is described-Young's fringe on the viewing screen is observed by a TV-camera and the 2-D video signal is converted from analog to digital and transfered to the computer where the spacing and direction of the fringes are calculated. Several examples of application show that the displacement magnitude and direction can be determined with an accuracy of $0.1{\mu}m\;and\;0.1^{\circ}$ respectively.

  • PDF

A study of fabrication micro bump for TSP testing using maskless lithography system. (Maskless Lithography system을 이용한 TSP 검사 용 micro bump 제작에 관한 연구.)

  • Kim, Ki-Beom;Han, Bong-Seok;Yang, Ji-Kyung;Han, Yu-Jin;Kang, Dong-Seong;Lee, In-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.674-680
    • /
    • 2017
  • Touch Screen Panel (TSP) is a widely used personal handheld device and as a large display apparatus. This study examines micro bump fabrication technology for TSP test process. In the testing process, as TSP is changed, should make a new micro bump for probing and modify the testing program. In this paper we use a maskless lithography system to confirm the potential to fabricatemicro bump to reducecost and manufacturing time. The requiredmaskless lithography system does not use a mask so it can reduce the cost of fabrication and it flexible to cope with changes of micro bump probing. We conducted electro field simulation by pitches of micro bump and designed the lithography pattern image for the maskless lithography process. Then we conducted Photo Resist (PR) patterning process and electro-plating process that are involved in MEMS technology to fabricate micro bump.

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young;Korystov, Dmitry;Jin, Young-Eup;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2253-2260
    • /
    • 2007
  • A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.