• Title/Summary/Keyword: image plate

Search Result 684, Processing Time 0.023 seconds

Finite Element Analysis of Stress Distribution in using Face Mask according to Traction Point (훼이스 마스크의 견인위치에 따른 응력분포에 관한 유한요소법적 연구)

  • Oh, Kyo-chang;Cha, Kyung-Suk;Chung, Dong-hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.171-181
    • /
    • 2009
  • The objective of this study was to analyse stress distribution of maxillary complex by use of face mask. The construction of the three-dimensional FEM model was based on the computed tomography(CT) scans of 13.5 years-old male subject. The CT image were digitized and converted to the finite element model by using the mimics program, with PATRAN. An anteriorly directed force of 500g was applied at the first premolar 45 degrees downwards to the FH plane and at the first molar 20 degrees downwards to the FH plane. When 45 degrees force was applied at maxillary first premolar, there were observed expansion at molar part and constriction at premolar part. The largest displacement was 0.00011mm in the x-axis. In the y-axis, anterior displacement observed generally 0.00030mm at maximum. In the z-axis, maxillary complex was displaced 0.00036 mm forward and downward. When 20 degrees force was applied at maxilla first molar, there were observed expansion at lateral nasal wall and constriction at molar part. The largest displacement was 0.001mm in the X-axis. In the Y-axis, anterior displacement observed generally 0.004mm at maximum. In the Z-axis, ANS was displaced upward and pterygoid complex was displaced downward. The largest displacement was 0.002mm.

A Study on the Development of Mobile Robot for Inspection of Hull Surface (선체 외부 검사용 모바일 로봇 개발에 관한 연구)

  • Kim, Jin-Man;Kim, Heon-Hui;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.744-750
    • /
    • 2015
  • In this paper, development of mobile robot for the inspection of hull surface was mentioned. In the sea, it is difficult to proceed with the visual inspection of hull side and thus mobile robot for checking the status could be run with strap-on its surface. To do this, permanent magnet module to generate magnetic force between hull surface and mobile robot, and structure to minimize variance of the force under curvature circumstance were considered on the design. Based on the design, mobile robot with four NdFeB, four driving wheels and image aquisition module was applied. Load experiment to check the adhesive force, slip test during stop state and driving test to measure driving speed were executed. From the experiments 13 Kgf adhesive force was obtained and slip was not happened until 8 Kgf load on the inclined plate. Driving speed of mobile robot was measured at 0.82 m/s corresponding to 6.5 ampere. We confirmed the effectiveness of developed mobile robot by experiments to check its characteristics.

Radiopacity of contemporary luting cements using conventional and digital radiography

  • An, Seo-Young;An, Chang-Hyeon;Choi, Karp-Sik;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.97-101
    • /
    • 2018
  • Purpose: This study evaluated the radiopacity of contemporary luting cements using conventional and digital radiography. Materials and Methods: Disc specimens (N=24, n=6 per group, ø$7mm{\times}1mm$) were prepared using 4 resin-based luting cements (Duolink, Multilink N, Panavia F 2.0, and U-cem). The specimens were radiographed using films, a complementary metal oxide semiconductor (CMOS) sensor, and a photostimulable phosphor plate (PSP) with a 10-step aluminum step wedge (1 mm incremental steps) and a 1-mm-thick tooth cut. The settings were 70 kVp, 4 mA, and 30 cm, with an exposure time of 0.2 s for the films and 0.1 s for the CMOS sensor and PSP. The films were scanned using a scanner. The radiopacity of the luting cements and tooth was measured using a densitometer for the film and NIH ImageJ software for the images obtained from the CMOS sensor, PSP, and scanned films. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Results: Multilink (3.44-4.33) showed the highest radiopacity, followed by U-cem (1.81-2.88), Panavia F 2.0 (1.51-2.69), and Duolink (1.48-2.59). The $R^2$ values of the optical density of the aluminum step wedge were 0.9923 for the films, 0.9989 for the PSP, 0.9986 for the scanned films, and 0.9266 for the CMOS sensor in the linear regression models. Conclusion: The radiopacities of the luting materials were greater than those of aluminum or dentin at the same thickness. PSP is recommended as a detector for radiopacity measurements because of its accuracy and convenience.

The Study of Effectiveness of 3 Spot DR for the Whole Spine Radiography with Comparison of Phantom Distortions (3 Spot DR를 이용한 척추 전장 촬영 시 모형 왜곡도 비교를 통한 유용성 연구)

  • Kim, Sang-Hyun;Lee, Mi-Hwa
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.345-351
    • /
    • 2014
  • The purpose of this study is to offer more accurate information in whole spine examination of 3 spot DR through the comparative study about image distortion as making the flat phantom and measuring horizontal, vertical ratio and cobb angle of the virtual. We produced $H(40cm){\times}V(116cm){\times}D(2.3cm)$ flat acrylic phantom with lattice type of lead plate. We took projection respectively 3 times, total 9 times in each equipments using manufactured phantom as changing OFD to 6, 12, 18 cm. We measured a horizontal and vertical length of lead lattice and calculated the ratio. As appointing arbitrary points in the phantom and we measured cobb angle. The results of horizontal, vertical ratio measured CR type 0.98~1.01, scan DR type 0.96~0.97 and 3 spot DR 0.99~1.01. Cobb angle measured $52.5{\sim}53.3^{\circ}$, $52.1{\sim}54.3^{\circ}$ and $52.8{\sim}53.2^{\circ}$. Finally we can say that 3 spot DR method is an accurate method without any distortion in whole spine radiography.

Single-Camera Micro-Stereo 4D-PTV (단일카메라 마이크로 스테레오 4D-PTV)

  • Doh, Deog-Hee;Cho, Young-Beom;Lee, Jae-Min;Kim, Dong-Hyuk;Jo, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1087-1092
    • /
    • 2010
  • A micro 3D-PTV system has been constructed using a single camera system. Two viewing holes were created behind the object lens of the microscopic system to construct a stereoscopic viewing image. A hybrid recursive PTV algorithm was used. A concept of epipolar line was adopted to eliminate many spurious candidates. Three-dimensional velocity vector fields were obtained by calculating the three-dimensional displacements of particles that were identified as being identical. The system consists of a laser light source (Ar-ion, 500 mW), one high-definition camera ($1028{\times}1024$ pixels, 500 fps), a circular plate with two viewing holes, and a host computer. The performance of the developed algorithm was tested using artificial images. The characteristic of the vector recovery ratio was investigated for the particle numbers. A micro backward-facing step channel ($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times}3000{\mu}m$) was measured using the developed measurement system. The results were in good qualitative agreement with other results.

A Study on the Vibration Characteristics of Attitude Maneuvering of Satellite (위성의 자세기동에 따른 진동특성에 관한 연구)

  • Pyeon, Bong-Do;Bae, Jae-Sung;Kim, Jong-Hyuk;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2019
  • The design requirements of modern satellites vary depending on the purpose of operation. Like conventional medium and large-scale satellites, small satellites which operate on low orbit may also serve military purposes. As a result, there is increased demand for high-resolution photos and videos and multi-target observation becomes important. The most important design parameter for multi-target observation is the satellites' maneuverability. For increased maneuverability, the miniaturization is required to increase the stiffness of the satellite as this decreases the mass moment of inertia of the satellite. In the case of a solar panel having relatively low stiffness compared to the satellites' body, vibrations are generated when the attitude maneuver is performed, which greatly influences the image acquisition. For verification of such vibrational characteristics, the satellites is modeled as a reduced model, and experimental zig for simulating attitude maneuver is introduced. A rigidity simulator for simulating the stiffness of the satellite is also proposed. Additionally, the objective of the experimental method is to simulate the maneuvering angle of the satellite based on the winding length of the wire using a step motor, and to experimentally verify the vibration characteristics of the satellite body and the solar panel generated during the maneuvering test.

Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image (편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가)

  • Sim, Ho;Jung, Wonwoo;Hong, Seongsik;Seo, Jaewon;Park, Changyun;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.309-316
    • /
    • 2022
  • In order to minimize the human and time consumption required for rock classification, research on rock classification using artificial intelligence (AI) has recently developed. In this study, basic volcanic rocks were subdivided by using polarizing microscope thin section images. A convolutional neural network (CNN) model based on Tensorflow and Keras libraries was self-producted for rock classification. A total of 720 images of olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt reference specimens were mounted with open nicol, cross nicol, and adding gypsum plates, and trained at the training : test = 7 : 3 ratio. As a result of machine learning, the classification accuracy was over 80-90%. When we confirmed the classification accuracy of each AI model, it is expected that the rock classification method of this model will not be much different from the rock classification process of a geologist. Furthermore, if not only this model but also models that subdivide more diverse rock types are produced and integrated, the AI model that satisfies both the speed of data classification and the accessibility of non-experts can be developed, thereby providing a new framework for basic petrology research.

The study on cytotoxicity of cytokines produced by the activated human NKT cells on neuroblastoma (활성화된 자연살상 T 세포(NKT)에서 생성된 사이토카인에 의한 신경모세포종의 세포독성에 관한 연구)

  • Cho, Jin Young;Yoon, Young Wook;Yoon, Hyang Suk;Kim, Jong Duk;Choi, Du Young
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.439-445
    • /
    • 2006
  • Purpose : ${\alpha}$-Galactosylceramide (${\alpha}$-GalCer)-stimulated human $V{\alpha}24$ natural killer T (NKT) cells exert antitumor activity against some leukemia in a CD1d dependent and TCR-mediated manner, but could not kill CD1d - negative neuroblastoma (NB) cells. There are few reports about the direct antitumor effect of highly secreted cytokines by these cells on activation. In this study, using a cell-free supernatant (SPN) collected from plate bound hCD1d/${\alpha}$ GalCer tetramers-stimulated NKT cells, we examined whether they could be helpful in the immunotherapeutic treatment of NB. Methods : Cells were cultured in IMDM. The cytokines produced by NKT cells were measured with Cytometric Bead Array (CBA) analysis. Cell viability was evaluated by calcein-AM fluorescence with digital image microscopy scanning (DIMSCAN). The percentage of specific apoptosis was calculated by flow cytometric detection of apoptosis using annexin V and 7-AAD. Results : The activated NKT cells secreted high levels of IL-2, INF-${\gamma}$, TNF-${\alpha}$. The SPN was significantly cytotoxic against four out of eight tested NB cell lines, through mainly apoptosis as evidenced by annexin-V staining and inhibition with the pretreatment of pancaspase blocker. This apoptosis was significantly inhibited when anti-TNF-${\alpha}$ and anti-IFN-${\gamma}$ neutralizing mAbs were used separately and it was completely abolished when the two mAbs were combined. Conclusion : IFN-${\gamma}$ and TNF-${\alpha}$ produced by NKT cells could exert synergistically direct antitumor activity through apoptosis on some NB cell lines.

In Vitro Intrinsic Radiosensitivity Of Human Squamous Cell Carcinoma in Primary Culture (인체 상피 세포암의 일차 배양을 이용한 방사선 민감도 측정)

  • Choi Eun Kyung;Yang Kwang Mo;Yi Byong Yong;Chang Hyesook;Kim Sang-Yoon;Nam Joo-Hyun;Yu Eunsil;Lee Inchul
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 1994
  • There are a number of reports suggesting that there may be a correlation between the clinical response to radiotherapy in various tumors and the clonogenic survival of cell lines derived from these tumors following exposure to 2 Gy(SF2). Authors conducted this study to determine SF2 for cells in primary culture from surgical specimens. The tumor tissues with squamous cell carcinoma of uterine cervix and head and neck were obtained. The tumor tissues were disaggregated to single cells by incubating with collagenase type w for 2 hours with constant stirring. Single cell suspensions were inoculated in four 24-well plates precoated with cell adhesive matrix. After 24 hours of incubation at 37$ ^{\circ}C $, rows of four wells were then irradiated, consisting of control set and five other sets each receiving doses of 1,2,3,4, and 6 Gy. After incubation for a total of 13 days, the cultures were stained with crystal violet and survival at each dose was determined by quantitative image analysis system, To determine whether cell growth was of epithelial origin, immunocytochemical staining with a mixture of cytokeratin and epithelial monoclonal antibodies were performed on cell cultures. During the period of this study, we received 5 squamous cell carcinoma specimens of head and neck and 20 of uterine cervical carcinoma. Of these, 15 yielded enough cells for radiosensitivity testing. This resulted an overall success rate of 60$ \% $. The mean SF2 value for 15 tumours was 0.55$\pm$0.17 ranging from 0.20 to 0.79. These results indicate that there is a broad range of sensitivities to radiation in same histologic type. So with a large patient population, we plan to determine whether a different SF2 value is associated with tumours that are controlled with radiotherapy than those that are not.

  • PDF

$^{99m}Tc$-Glucarate Uptake in Ischemic Tissue of Experimental Models of Cerebral Ischemia (실험적 뇌허혈증 모델에서 허혈 조직의 $^{99m}Tc$-glucarate 섭취)

  • Jeong, Jae-Min;Kim, Young-Ju;Choi, Seok-Rye;Kim, Chae-Kyun;Mar, Woong-Chun;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.484-492
    • /
    • 1996
  • To detect ischemic tissue in experimental model of cerebral ischemia made by middle cerebral artery(MCA)-occlusion, we acquired triple image of $^{99m}Tc$-glucarate, [$^{18}F$]fluoro-deoxyglucose (FDG), and 2,3,5- triphenyltetrazolium (TTC) staining. We made cerebral infarction either with reperfusion (after occlusion of 2 hours) or without reperfusion in 10 Sprague-Dawley rats by inserting thread to MCA through internal carotid artery. After 22 hours, we injected 740 MBq of $^{99m}Tc$-glucarate and 55.5 MBq of [$^{18}F$]FDG through tail vein. Each 1 mm slice of rat brains was frozen and exposed to imaging plate for 20 minutes in freezer to get an [$^{18}F$]FDG image. After 20 hours enough to fade radioactivity of [$^{18}F$]FDG, the slices were again imaged by BAS1500 for $^{99m}Tc$-glucarate uptake. Finally, these brain tissues were stained with TTC. Semi-quantitative visual analysis was done by grading 0 to 3 points according to the degree of uptakes($^{99m}Tc$-glucarate) and decreased uptakes([$^{18}F$]FDG and TTC). Ten rats survived with neurologic symptoms. TTC staining confirmed the development of infarction. The size of the infarction was relatively larger in the group without reperfusion. [$^{18}F$]FDG images were similar to TTC-stained images. However, we found regions with intermediate uptake which were not stained with TTC. We found regions with intermediate [$^{18}F$]FDG uptake where TTC staining was normal. $^{99m}Tc$-glucarate uptake was round only in TTC non-stained region. In the TTC stained regions, there were no uptake of $^{99m}Tc$-glucarate. We could not find clear relation between $^{99m}Tc$-glucarate uptake with [$^{18}F$]FDG uptake. This was partly because percent uptake of $^{99m}Tc$-glucarate was so small (less than 1 percent of injected dose) and because there were quite heterogeneity of patterns of [$^{18}F$]FDG uptake and TTC. With these findings, we could conclude that $^{99m}Tc$-glucarate were taken up only in part of ischemic tissues which were proven to be nonviable. The establishment of MCA-occluded rat model with or without reperfusion and triple imaging for $^{99m}Tc,\;^{18}F$ and TTC helped the characterization of $^{99m}Tc$-glucarate uptakes. Further work is needed to clarify the meaning or diversities or [$^{18}F$]FDG and TTC and their relation with $^{99m}Tc$-glucarate.

  • PDF