• Title/Summary/Keyword: image fourier transform

Search Result 272, Processing Time 0.033 seconds

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

Study on the Two-wavelength Digital Holography Using Double Fourier Transform (이중푸리에변환을 이용한 2 파장 디지털 홀로그래픽 연구)

  • Shin, Sang-Hoon;Jung, Won-Ki;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2010
  • The size of a reconstructed image depends on the reconstruction distance and wavelength. The double fourier transform method is proposed to eliminate the dependence on the reconstruction distance and wavelength. We can get a fixed reconstructed image size by using the double fourier transform method. Two wavelength digital holography is proposed to measure the step height, which is larger than a single wavelength. The two image size of different wavelength holograms should be the same in order to apply two wavelength digital holography. We use two wavelength digital holography and double fourier transforms to measure the step height. The measured data were reasonable and we found that the double fourier transform is useful in two wavelength digital holography.

Development of a Target Tracker using Phase Correlation (Phase Correlation을 이용한 표적 추적기 개발)

  • Jin, Sang-Hun;Suk, Jung-Youp
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.165-168
    • /
    • 2004
  • This paper propose a target tracker using phase correlation. The tracker consist of a pre-processing module, a translation estimation module based on phase correlation, a fine motion estimation module applied when confidence rate could not fulfill a threshold value and a reference image update module. The fine motion estimation module measure the shift, rotation and scale of input image compared to reference using Fourier-Mellin transform. Proposed tracker was tested its accuracy and robustness using some real indoor and outdoor image sequences.

  • PDF

Generating a True Color Image with Data from Scanning White-Light Interferometry by Using a Fourier Transform

  • Kim, Jin-Yong;Kim, Seungjae;Kim, Min-Gyu;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.408-414
    • /
    • 2019
  • In this paper we propose a method to generate a true color image in scanning white-light interferometry (SWLI). Previously, a true color image was obtained by using a color camera, or an RGB multichannel light source. Here we focused on acquiring a true color image without any hardware changes in basic SWLI, in which a monochrome camera is utilized. A Fourier transform method was used to obtain the spectral intensity distributions of the light reflected from the sample. RGB filtering was applied to the intensity distributions, to determine RGB values from the spectral intensity. Through color corrections, a true color image was generated from the RGB values. The image generated by the proposed method was verified on the basis of the RGB distance and peak signal-to-noise ratio analysis for its effectiveness.

PROPOSAL OF AMPLITUDE ONLY LOGARITHMIC RADON DESCRIPTER -A PERFORMANCE COMPARISON OF MATCHING SCORE-

  • Hasegawa, Makoto
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.450-455
    • /
    • 2009
  • Amplitude-only logarithmic Radon transform (ALR transform) for pattern matching is proposed. This method provides robustness for object translation, scaling, and rotation. An ALR image is invariant even if objects are translated in a picture. For the object scaling and rotation, the ALR image is merely translated. The objects are identified using a phase-only matched filter to the ALR image. The ratio of size, the difference of rotation angle, and the position between the two objects are detected. Our pattern matching procedure is described, herein, and its simulation is executed. We compare matching scores with the Fourier-Mellin transform, and the general phase-only matched filter.

  • PDF

Forensic Decision of Median Filtering Image Using a Coefficient of Variation of Fourier Transform (Fourier 변환 변이계수를 이용한 미디언 필터링 영상의 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.67-73
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is the image alteration by a forger. For the problem solution, this paper proposes the forensic decision algorithm of a median filtering (MF) image using the feature vector based on a coefficient of variation (c.v.) of Fourier transform. In the proposed algorithm, we compute Fourier transform (FT) coefficients of row and column line respectively of an image first, then c.v. between neighboring lines is computed. Subsquently, 10 Dim. feature vector is defined for the MF detection. On the experiment of MF detection, the proposed scheme is compared to MFR (Median Filter Residual) and Rhee's MF detection schemes that have the same 10 Dim. feature vector both. As a result, the performance is excellent at Unaltered, JPEG (QF=90), Down scaling (0.9) and Up scaling (1.1) images, and it showed good performance at Gaussian filtering ($3{\times}3$) image. However, in the performance evaluation of all measured items of the proposed scheme, AUC (Area Under ROC (Receiver Operating Characteristic) Curve) by the sensitivity and 1-specificity approached to 1 thus, it is confirmed that the grade of the performance evaluation is rated as 'Excellent (A)'.

A Dual Log-polar Map Rotation and Scale-Invariant Image Transform

  • Lee, Gang-Hwa;Lee, Suk-Gyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.45-50
    • /
    • 2008
  • The Fourier-Mellin transform is the theoretical basis for the translation, rotation, and scale invariance of an image. However, its implementation requires a log-polar map of the original image, which requires logarithmic sampling of a radial variable in that image. This means that the mapping process is accompanied by considerable loss of data. To solve this problem, we propose a dual log-polar map that uses both a forward image map and a reverse image map simultaneously. Data loss due to the forward map sub-sampling can be offset by the reverse map. This is the first step in creating an invertible log-polar map. Experimental results have demonstrated the effectiveness of the proposed scheme.

Texture Feature Extractor Based on 2D Local Fourier Transform (2D 지역푸리에변환 기반 텍스쳐 특징 서술자에 관한 연구)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Kim, Hyun-Soo;Kim, Deok-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.106-109
    • /
    • 2009
  • Recently, image matching becomes important in Computer Aided Diagnosis (CAD) due to the huge amount of medical images. Specially, texture feature is useful in medical image matching. However, texture features such as co-occurrence matrices can't describe well the spatial distribution of gray levels of the neighborhood pixels. In this paper we propose a frequency domain-based texture feature extractor that describes the local spatial distribution for medical image retrieval. This method is based on 2D Local Discrete Fourier transform of local images. The features are extracted from local Fourier histograms that generated by four Fourier images. Experimental results using 40 classes Brodatz textures and 1 class of Emphysema CT images show that the average accuracy of retrieval is about 93%.

A Study on Optimization of Classification Performance through Fourier Transform and Image Augmentation (푸리에 변환 및 이미지 증강을 통한 분류 성능 최적화에 관한 연구)

  • Kihyun Kim;Seong-Mok Kim;Yong Soo Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.119-129
    • /
    • 2023
  • Purpose: This study proposes a classification model for implementing condition-based maintenance (CBM) by monitoring the real-time status of a machine using acceleration sensor data collected from a vehicle. Methods: The classification model's performance was improved by applying Fourier transform to convert the acceleration sensor data from the time domain to the frequency domain. Additionally, the Generative Adversarial Network (GAN) algorithm was used to augment images and further enhance the classification model's performance. Results: Experimental results demonstrate that the GAN algorithm can effectively serve as an image augmentation technique to enhance the performance of the classification model. Consequently, the proposed approach yielded a significant improvement in the classification model's accuracy. Conclusion: While this study focused on the effectiveness of the GAN algorithm as an image augmentation method, further research is necessary to compare its performance with other image augmentation techniques. Additionally, it is essential to consider the potential for performance degradation due to class imbalance and conduct follow-up studies to address this issue.

Circular Fast Fourier Transform Application: A Useful Script for Fast Fourier Transform Data Analysis of High-resolution Transmission Electron Microscopy Image

  • Kim, Jin-Gyu;Yoo, Seung Jo;Kim, Chang-Yeon;Jou, Hyeong-Tae
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.138-143
    • /
    • 2014
  • Transmission electron microscope (TEM) is an excellent tool for studying the structure and properties of nanostructured materials. As the development of $C_s$-corrected TEM, the direct analysis of atomic structures of nanostructured materials can be performed in the high-resolution transmission electron microscopy (HRTEM). Especially, fast Fourier transform (FFT) technique in image processing is very useful way to determine the crystal structure of HRTEM images in reciprocal space. To apply FFT technique in HRTEM analysis in more reasonable and friendly manner, we made a new circular region of interest (C-ROI) FFT script and tested it for several HRTEM analysis. Consequentially, it was proved that the new FFT application shows more quantitative and clearer results than conventional FFT script by removing the streaky artifacts in FFT pattern images. Finally, it is expected that the new FFT script gives great advantages for quantitative interpretation of HRTEM images of many nanostructured materials.