• Title/Summary/Keyword: image entropy

Search Result 349, Processing Time 0.024 seconds

Visual Entropy gain for Wavelet Image Coding (웨이블릿 화상 코딩에서의 시각적 엔트로피 이득)

  • Park, Jin-Cheol;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.383-385
    • /
    • 2007
  • 웨이블릿 화상 코딩 기법은 자연적으로 레이어드된 비트스트림을 생성해 내기 때문에, 주파수 제한적인 채널 상황에서 에러에 강한 성능을 나타내고 있다. 본 논문에서는 Progressive Image Coder의 성능을 비교하고 평가하는 새로운 기법인 시각적 엔트로피를 이용해, 웨이블릿 영역에서 시각적인 가중치를 이용해 정량화하려고 한다. 이 시각적인 가중치는 주파수 영역과 공간 영역에서, 인간의 시각 체계(HVS, human visual system)에 기반 하여 만들어진 것으로, 웨이블릿 계수들의 코딩 순서를 결정하는 기준으로 사용되고, 이렇게 해서 시각적인 화질을 개선할 수가 있다. 정규화된 채널 용량이 0.3일 때, 전송 이득은 시각적 엔트로피로 측정해 보았을 때 23% 이상 얻을 수 있다.

Subject Region-Based Auto-Focusing Algorithm Using Noise Robust Focus Measure (잡음에 강인한 초점 값을 이용한 피사체 중심의 자동초점 알고리듬)

  • Jeon, Jae-Hwan;Yoon, In-Hye;Lee, Jin-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this paper we present subject region-based auto-focusing algorithm using noise robust focus measure. The proposed algorithm automatically estimates the main subject using entropy and solves the traditional problems with a subject position or high frequency component of background image. We also propose a new focus measure by analyzing the discrete cosine transform coefficients. Experimental results show that the proposed method is more robust to Gaussian and impulse noises than the traditional methods. The proposed algorithm can be applied to Pan-tilt-zoom (PTZ) cameras in the intelligent video surveillance system.

Review of Soil Structure Quantification from Soil Images

  • Chun, Hyen-Chung;Gimenez, Daniel;Yoon, Sung-Won;Park, Chan-Won;Moon, Yong-Hee;Sonn, Yeon-Kyu;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.517-526
    • /
    • 2011
  • Soil structure plays an important role in ecological system, since it controls transport and storage of air, gas, nutrients and solutions. The study of soil structure requires an understanding of the interrelations and interactions between the diverse soil components at various levels of organization. Investigations of the spatial distribution of pore/particle arrangements and the geometry of soil pore space can provide important information regarding ecological or crop system. Because of conveniences in image analyses and accuracy, these investigations have been thrived for a long time. Image analyses from soil sections through impregnated blocks of undisturbed soil (2 dimensional image analyses) or from 3 dimensional scanned soils by computer tomography allow quantitative assessment of the pore space. Image analysis techniques can be used to classify pore types and quantify pore structure without inaccurate or hard labor in laboratory. In this paper, the last 50 years of the soil image analyses have been presented and measurements on various soil scales were introduced, as well. In addition to history of image analyses, a couple of examples for soil image analyses were displayed. The discussion was made on the applications of image analyses and techniques to quantify pore/soil structure.

Definition and Analysis of Shadow Features for Shadow Detection in Single Natural Image (단일 자연 영상에서 그림자 검출을 위한 그림자 특징 요소들의 정의와 분석)

  • Park, Ki Hong;Lee, Yang Sun
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.165-171
    • /
    • 2018
  • Shadow is a physical phenomenon observed in natural scenes and has a negative effect on various image processing systems such as intelligent video surveillance, traffic surveillance and aerial imagery analysis. Therefore, shadow detection should be considered as a preprocessing process in all areas of computer vision. In this paper, we define and analyze various feature elements for shadow detection in a single natural image that does not require a reference image. The shadow elements describe the intensity, chromaticity, illuminant-invariant, color invariance, and entropy image, which indicate the uncertainty of the information. The results show that the chromaticity and illuminant-invariant images are effective for shadow detection. In the future, we will define a fusion map of various shadow feature elements, and continue to study shadow detection that can adapt to various lighting levels, and shadow removal using chromaticity and illuminance invariant images.

Image Analysis of Diffuse Liver Disease using Computer-Adided Diagnosis in the Liver US Image (간 초음파영상에서 컴퓨터보조진단을 이용한 미만성 간질환의 영상분석)

  • Lee, Jinsoo;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2015
  • In this paper, we studied possibility about application for CAD on diffuse liver disease through pixel texture analysis parameters(average gray level, skewness, entropy) which based statistical property brightness histogram and image analysis using brightness difference liver and kidney parenchyma. The experiment was set by ROI ($50{\times}50$ pixels) on liver ultrasound images.(non specific, fatty liver, liver cirrhosis) then, evaluated disease recognition rates using 4 types pixel texture analysis parameters and brightness gap liver and kidney parenchyma. As a results, disease recognition rates which contained average brightness, skewness, uniformity, entropy was scored 100%~96%, they were high. In brightness gap between liver and kidney parenchyma, non specific was $-1.129{\pm}12.410$ fatty liver was $33.182{\pm}11.826$, these were shown significantly difference, but liver cirrhosis was $-1.668{\pm}10.081$, that was somewhat small difference with non specific case. Consequently, pixel texture analysis parameter which scored high disease recognition rates and CAD which used brightness difference of parenchyma are very useful for detecting diffuse liver disease as well as these are possible to use clinical technique and minimize reading miss. Also, it helps to suggest correct diagnose and treatment.

Achievement of Color Constancy by Eigenvector (고유벡터에 의한 색 일관성의 달성)

  • Kim, Dal-Hyoun;Bak, Jong-Cheon;Jung, Seok-Ju;Kim, Kyung-Ah;Cha, Eun-Jong;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.972-978
    • /
    • 2009
  • In order to achieve color constancy, this paper proposes a method that can detect an invariant direction that affects formation of an intrinsic image significantly, using eigenvector in the $\chi$-chromaticity space. Firstly, image is converted into datum in the $\chi$-chromaticity space which was suggested by Finlayson et al. Secondly, it removes datum, like noises, with low probabilities that may affect an invariant direction. Thirdly, so as to detect the invariant direction that is consistent with a principal direction, the eigenvector corresponding to the largest eigenvalue is calculated from datum extracted above. Finally, an intrinsic image is acquired by recovering datum with the detected invariant direction. Test images were used as parts of the image data presented by Barnard et al., and detection performance of invariant direction was compared with that of entropy minimization method. The results of experiment showed that our method detected constant invariant direction since the proposed method had lower standard deviation than the entropy method, and was over three times faster than the compared method in the aspect of detection speed.

Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis (GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용)

  • Lee Kiwon;Jeon So-Hee;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.121-133
    • /
    • 2005
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of the useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program based on GLCM algorithm is newly implemented. As well, texture imaging modules for GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV Texture imaging parameters, it composed of six types of second order texture functions such as Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality in GLCM/GLDV, two direction modes such as Omni-mode and Circular mode newly implemented in this program are provided with basic eight-direction mode. Omni-mode is to compute all direction to avoid directionality complexity in the practical level, and circular direction is to compute texture parameters by circular direction surrounding a target pixel in a kernel. At the second phase of this study, some case studies with artificial image and actual satellite imagery are carried out to analyze texture images in different parameters and modes by correlation matrix analysis. It is concluded that selection of texture parameters and modes is the critical issues in an application based on texture image fusion.

Forensic Image Classification using Data Mining Decision Tree (데이터 마이닝 결정나무를 이용한 포렌식 영상의 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.49-55
    • /
    • 2016
  • In digital forensic images, there is a serious problem that is distributed with various image types. For the problem solution, this paper proposes a classification algorithm of the forensic image types. The proposed algorithm extracts the 21-dim. feature vector with the contrast and energy from GLCM (Gray Level Co-occurrence Matrix), and the entropy of each image type. The classification test of the forensic images is performed with an exhaustive combination of the image types. Through the experiments, TP (True Positive) and FN (False Negative) is detected respectively. While it is confirmed that performed class evaluation of the proposed algorithm is rated as 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic Curve) is 0.9980 by the sensitivity and the 1-specificity. Also, the minimum average decision error is 0.1349. Also, at the minimum average decision error is 0.0179, the whole forensic image types which are involved then, our classification effectiveness is high.

QuadTree-Based Lossless Image Compression and Encryption for Real-Time Processing (실시간 처리를 위한 쿼드트리 기반 무손실 영상압축 및 암호화)

  • Yoon, Jeong-Oh;Sung, Woo-Seok;Hwang, Chan-Sik
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.525-534
    • /
    • 2001
  • Generally, compression and encryption procedures are performed independently in lossless image compression and encryption. When compression is followed by encryption, the compressed-stream should have the property of randomness because its entropy is decreased during the compression. However, when full data is compressed using image compression methods and then encrypted by encryption algorithms, real-time processing is unrealistic due to the time delay involved. In this paper, we propose to combine compression and encryption to reduce the overall processing time. It is method decomposing gray-scale image by means of quadtree compression algorithms and encrypting the structural part. Moreover, the lossless compression ratio can be increased using a transform that provides an decorrelated image and homogeneous region, and the encryption security can be improved using a reconstruction of the unencrypted quadtree data at each level. We confirmed the increased compression ratio, improved encryption security, and real-time processing by using computer simulations.

  • PDF

Implementation for Texture Imaging Algorithm based on GLCM/GLDV and Use Case Experiments with High Resolution Imagery

  • Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.626-629
    • /
    • 2004
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program for GLCM algorithm is newly implemented in the MS Visual IDE environment. While, additional texture imaging modules based on GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV texture variables, it composed of six types of second order texture function in the several quantization levels of 2(binary image), 8, and 16: Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality, four directions are provided as $E-W(0^{\circ}),\;N-E(45^{\circ}),\;S-W(135^{\circ}),\;and\;N-S(90^{\circ}),$ and W-E direction is also considered in the negative direction of E- W direction. While, two direction modes are provided in this program: Omni-mode and Circular mode. Omni-mode is to compute all direction to avoid directionality problem, and circular direction is to compute texture variables by circular direction surrounding target pixel. At the second phase of this study, some examples with artificial image and actual satellite imagery are carried out to demonstrate effectiveness of texture imaging or to help texture image interpretation. As the reference, most previous studies related to texture image analysis have been used for the classification purpose, but this study aims at the creation and general uses of texture image for urban remote sensing.

  • PDF