• 제목/요약/키워드: image clustering

검색결과 601건 처리시간 0.032초

Lab Color Space based Rice Yield Prediction using Low Altitude UAV Field Image

  • Reza, Md Nasim;Na, Inseop;Baek, Sunwook;Lee, In;Lee, Kyeonghwan
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.42-42
    • /
    • 2017
  • Prediction of rice yield during a growing season would be very helpful to magnify rice yield as it also allows better farm practices to maximize yield with greater profit and lesser costs. UAV imagery based automatic detection of rice can be a relevant solution for early prediction of yield. So, we propose an image processing technique to predict rice yield using low altitude UAV images. We proposed $L^*a^*b^*$ color space based image segmentation algorithm. All images were captured using UAV mounted RGB camera. The proposed algorithm was developed to find out rice grain area from the image background. We took RGB image and applied filter to remove noise and converted RGB image to $L^*a^*b^*$ color space. All color information contain in both $a^*$ and $b^*$ layers and by using k-mean clustering classification of these colors were executed. Variation between two colors can be measured and labelling of pixels was completed by cluster index. Image was finally segmented using color. The proposed method showed that rice grain could be segmented and we can recognize rice grains from the UAV images. We can analyze grain areas and by estimating area and volume we could predict rice yield.

  • PDF

이미지 브라우징 처리를 위한 전형적인 의미 주석 결합 방법 (Clustering Representative Annotations for Image Browsing)

  • 주철화;왕령;이양구;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.62-65
    • /
    • 2010
  • Image annotations allow users to access a large image database with textual queries. But since the surrounding text of Web images is generally noisy. an efficient image annotation and retrieval system is highly desired. which requires effective image search techniques. Data mining techniques can be adopted to de-noise and figure out salient terms or phrases from the search results. Clustering algorithms make it possible to represent visual features of images with finite symbols. Annotationbased image search engines can obtains thousands of images for a given query; but their results also consist of visually noise. In this paper. we present a new algorithm Double-Circles that allows a user to remove noise results and characterize more precise representative annotations. We demonstrate our approach on images collected from Flickr image search. Experiments conducted on real Web images show the effectiveness and efficiency of the proposed model.

  • PDF

웨이브렛 변환과 퍼지 군집화를 활용한 문자추출 (Character Extraction Using Wavelet Transform and Fuzzy Clustering)

  • 황중원;황재호
    • 대한전자공학회논문지SP
    • /
    • 제44권4호통권316호
    • /
    • pp.93-100
    • /
    • 2007
  • 웨이브렛 변환에 근거하여 디지털영상으로부터 문자를 처리하는 새로운 접근법을 제시한다. 대상은 각필(刻筆)문자 영상이다. 각필문자에는 형성된 결상에 유사성이 존속하며 배경부분과 함께 서로 다른 준위의 다해상도 특성들로 분해된다는 점을 착안하였다. 우선 Daubechies 웨이브렛을 적용하여 영상을 부대역들로 분해한다. 저주파 부대역은 분할처리와 FCM근거 퍼지 군집분리 및 면적기반 영역처리기법을 적용하여 문자특성을 추출한다. 고주파 부대역들에는 이동창을 설정하고, 이동창의 국부 에너지를 추정하여 고주파 특성들을 활성화한다. 이들 특성들은 조합되어 역웨이브렛 과정을 통해 본래 영상 상태로 복원되고 배경부분이 배제된 문자를 추출한다. 실험 결과는 제안된 기법의 효과를 보이고 있다.

특징벡터의 끌러스터링 기법을 통한 2단계 내용기반 이미지검색 시스템 (Two-phase Content-based Image Retrieval Using the Clustering of Feature Vector)

  • 조정원;최병욱
    • 전자공학회논문지CI
    • /
    • 제40권3호
    • /
    • pp.171-180
    • /
    • 2003
  • 내용기반 이미지검색이란 색상, 형태 및 질감 등의 저-수준 특징정보를 이용하여 이미지 데이터베이스를 구축하고, 이미지에 대한 검색요구가 발생했을 때 사용자가 찾고자 하는 이미지와 유사한 이미지를 제공하는 시스템으로 정의된다. 데이터베이스의 구축시간과 사용자가 질의를 입력한 후 결과를 얻을 때까지의 반응시간을 나누어 고려할 때, 사용자는 반응시간에 보다 관심을 갖는 것이 일반적이다. 내용기반 이미지검색 시스템에서 질의이미지와 데이터베이스 내의 이미지와의 유사도 비교시간이 전체 반응시간 중에서 가장 큰 비중을 차지한다. 본 논문에서는 이러한 유사도 비교시간을 최소화하기 위해 특징벡터의 클러스터링 기법을 적용한 2단계 탐색방법을 제안한다. 실험 결과를 통해 제안하는 2단계 탐색방법으로 대용량의 이미지 데이터베이스 내의 전체 이미지에 대한 원 특징정보와 비교하는 전체검색에 비해, 동일한 적합성을 보장하면서 평균적으로 2배 이상의 검색속도 향상을 확인하였으며, 이미지의 수가 더욱 커질수록 효과적임을 입증하였다.

영상의 히스토그램 군집화에 의한 영상 대비 향상 (A Image Contrast Enhancement by Clustering of Image Histogram)

  • 홍석근;이기환;조석제
    • 융합신호처리학회논문지
    • /
    • 제10권4호
    • /
    • pp.239-244
    • /
    • 2009
  • 영상 대비 향상은 영상 처리 분야에서 중요한 역할을 한다. 히스토그램 스트레칭이나 히스토그램 균등화 등 기존 대비 향상 기법들과 히스토그램 균등화 기반의 수많은 방법들은 저대비에 소수의 화소들이 넓게 퍼져 있는 영상에 대해서 만족할만한 결과를 내지 못한다. 따라서 본 논문은 군집화 방법에 기반한 새로운 영상 대비 향상 기법을 제안한다. 히스토그램의 군집수는 원영상의 히스토그램을 분석하여 얻을 수 있다. 히스토그램 성분들을 K-means 알고리즘을 이용하여 군집화한다. 그리고 히스토그램 군집 범위와 군집의 화소수 비율을 비교하여 히스토그램 스트레칭과 히스토그램 균등화를 선택적으로 적용한다. 실험 결과로부터 제안한 방법이 기존의 대비 향상 기법들보다 더 효과적임을 확인할 수 있었다.

  • PDF

다차원 클러스터링 기반의 단백질 2DE 이미지에서의 자동화된 기준점 추출 방법 (Automated Method of Landmark Extraction for Protein 2DE Images based on Multi-dimensional Clustering)

  • 심정은;이원석
    • 정보처리학회논문지D
    • /
    • 제12D권5호
    • /
    • pp.719-728
    • /
    • 2005
  • 2DE는 조직 내의 단백질을 규명하는 단백질 분리 기술이다. 그러나 2DE 이미지는 실험 조건, 스캐닝 상태와 같은 환경에 민감하게 영향을 받는다. 이러한 이미지간의 변화를 극복하기 위해서 사용자는 각각의 서로 다른 이미지에 수동으로 기준점을 입력해주어야 한다. 그러나 이 과정은 에러를 발생시키며 긴 시간을 요구하는 작업으로, 빠른 분석에 장애 요인이 된다. 따라서 본 논문에서는 기준점 프로파일에 기반 하여 기준점을 자동으로 추출하는 방법을 개발하였다. 기준점 프로파일은 이미 확인된 이미지들의 기준점들에 대한 클러스터링 방법을 통하여 생성하며, 각 클러스터의 다양한 속성을 정의한다. 새로운 이미지가 입력되면 기준점의 후보 스팟들을 대상으로 프로파일과 비교하석 기준점을 추출한다. 그리고 $A^*$알고리즘을 이용하여 기준점 선정 과정을 최적화한다. 본 논문에서는 실제 사람의 간 조직 이미지를 이용하여 기준점 추출 방법의 성능을 분석하였다

관심영역 추출과 통합에 의한 적외선 영상 분할 (Infrared Image Segmentation by Extracting and Merging Region of Interest)

  • 염석원
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-497
    • /
    • 2016
  • 적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.

剩餘數體系를 이용한 자승오차 패턴 클러스터링 프로세서의 실현 (Implementation of the Squared-Error Pattern Clustering Processor Using the Residue Number System)

  • 김형민;조원경
    • 대한전자공학회논문지
    • /
    • 제26권2호
    • /
    • pp.87-93
    • /
    • 1989
  • 패턴인식과 영상처리 응용에 이용되는 자승오차 패턴 클러스터링 알고리듬은 특징벡터 행렬의 연산에 상당한 처리시간은 요구한다. 그러므로 본 논문은 병렬처리와 파이프라인 특성을 갖는 잉여수체계를 이용한 고속의 자승오차 패턴 클러스터링 프로세서를 제안한다. 제안된 자승오차 패턴 클러스터링 프로세서는 영상분할 실험으로부터 의미있는 영역으로 나눌 수 있는 클러스터의 수에 대하여 만족할 만한 오차를 보이며 80287 수치 연산용 프로세서보다 약 200배 빠름을 보인다. 그 결과 대규모의 데이타를 실시간으로 처리하여야 하는 응용분야에 효과적으로 이용할 수 있음을 확인하였다.

  • PDF

Clustering을 결합한 PCA와 LDA 기반 얼굴 인식 (Face Recognition Based on PCA and LDA Combining Clustering)

  • 곽련화;김표재;장형진;최진영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.387-388
    • /
    • 2006
  • In this paper, we propose an efficient algorithm based on PCA and LDA combining K-means clustering method, which has better accuracy of face recognition than Eigenface and Fisherface. In this algorithm, PCA is firstly used to reduce the dimensionality of original face image. Secondly, a truncated face image data are sub-clustered by K-means clustering method based on Euclidean distances, and all small subclusters are labeled in sequence. Then LDA method project data into low dimension feature space and group data easier to classify. Finally we use nearest neighborhood method to determine the label of test data. To show the recognition accuracy of the proposed algorithm, we performed several simulations using the Yale and ORL (Olivetti Research Laboratory) database. Simulation results show that proposed method achieves better performance in recognition accuracy.

  • PDF

K-means Clustering using a Grid-based Sampling

  • 박희창;조광현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF