• Title/Summary/Keyword: image analysis software

Search Result 681, Processing Time 0.028 seconds

Development of 3D Image Processing Software using EMD for Ultrasonic NDE (EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발)

  • Nam, Myung-Woo;Lee, Young-Seock;Yang, Ok-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1569-1573
    • /
    • 2008
  • This paper describes a development of Ultrasonic NDE software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. And it can analyze the detected internal cracks using 3D image processing method. To do such, we obtain raw data from specimens of real pipeline of power plants, and get the envelope signal using Empirical Mode Decomposition from obtained ultrasonic 1-dimensional data. The reconstructed 3D crack images offer useful information about the location, shape and size of cracks, even if there is no special 2D image analysis technique. The developed analysis software is applied to specimens containing various cracks with known dimensions. The results of application showed that the developed software provided accurate and enhanced 2D images and reconstructed 3D image of cracks.

Design and Software Implementation of Noise Reduction Filter for Mid-wave Infrared Images (중적외선 영상 잡음 감소를 위한 SW 필터의 설계 및 구현)

  • Park, Hyunsung;Kim, Jungho;Lee, Sungho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.500-507
    • /
    • 2016
  • In order to increase the survivability of combatant ship, measuring and analyzing the infrared radiation is important. Consequently, providing analysis report is also important for the progress of the new combatant ship design. This paper proposes a design and software implementation of filtering for the noise reduction of mid-wave IR camera image. We reduced the total test cost by using the suggested software filtering technique instead of hardware replacement or re-calibration. In addition, we enhanced the accuracy of analysis results by adjusting the parameters of software filtering according to the results of filtered image.

Off-Site Distortion and Color Compensation of Underwater Archaeological Images Photographed in the Very Turbid Yellow Sea

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • Underwater photographing and image recording are essential for pre-excavation survey and during excavation in underwater archaeology. Unlike photographing on land, all underwater images suffer various quality degradations such as shape distortions, color shift, blur, low contrast, high noise levels and so on. Outcome is very often heavily photographing equipment and photographer dependent. Excavation schedule, weather conditions, and water conditions can put burdens on divers. Usable images are very limited compared to the efforts. In underwater archaeological study in very turbid water such as in the Yellow Sea (between mainland China and the Korean peninsula), underwater photographing is very challenging. In this study, off-site image distortion and color compensation techniques using an image processing/analysis software is investigated as an alternative image quality enhancement method. As sample images, photographs taken during the excavation of 800-year-old Taean Mado Shipwrecks in the Yellow Sea in 2008-2010 were mainly used. Significant enhancement in distortion and color compensation of archived images were obtained by simple post image processing using image processing/analysis software (PicMan) customized for given view ports, lenses and cameras with and without optical axis offsets. Post image processing is found to be very effective in distortion and color compensation of both recent and archived images from various photographing equipment models and configurations. Merits and demerit of in-situ, distortion and color compensated photographing with sophisticated equipment and conventional photographing equipment, which requires post image processing, are compared.

How to utilize vegetation survey using drone image and image analysis software

  • Han, Yong-Gu;Jung, Se-Hoon;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.114-119
    • /
    • 2017
  • This study tried to analyze error range and resolution of drone images using a rotary wing by comparing them with field measurement results and to analyze stands patterns in actual vegetation map preparation by comparing drone images with aerial images provided by National Geographic Information Institute of Korea. A total of 11 ground control points (GCPs) were selected in the area, and coordinates of the points were identified. In the analysis of aerial images taken by a drone, error per pixel was analyzed to be 0.284 cm. Also, digital elevation model (DEM), digital surface model (DSM), and orthomosaic image were abstracted. When drone images were comparatively analyzed with coordinates of ground control points (GCPs), root mean square error (RMSE) was analyzed as 2.36, 1.37, and 5.15 m in the direction of X, Y, and Z. Because of this error, there were some differences in locations between images edited after field measurement and images edited without field measurement. Also, drone images taken in the stream and the forest and 51 and 25 cm resolution aerial images provided by the National Geographic Information Institute of Korea were compared to identify stands patterns. To have a standard to classify polygons according to each aerial image, image analysis software (eCognition) was used. As a result, it was analyzed that drone images made more precise polygons than 51 and 25 cm resolution images provided by the National Geographic Information Institute of Korea. Therefore, if we utilize drones appropriately according to characteristics of subject, we can have advantages in vegetation change survey and general monitoring survey as it can acquire detailed information and can take images continuously.

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

Image Reformation with a Personal Computer for Dental Implant Planning (치과 임플란트 계획시 개인용 컴퓨터를 이용한 영상재형성에 관한 연구)

  • Eun-Kyung Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.255-264
    • /
    • 1996
  • This study was performed to demonstrate the method of image reformation for dental implants, using a personal computer with inexpensive softwares and to compare the images reformatted using the above method with those using Dentascan software. CT axial slices of 4 mandibles of 4 volunteers from GE Highspeed Advantage(GE Medical systems, U.S.A.) were used. personal computer used for image reformation was PowerWave 604/120 (Power computing Co, U.S.A. ) and softwares used were Osiris (Univ. Hospital of Geneva, Switzerland) and ImportACLESS Vl.1 (Designed Access Co., U.S.A.) for importing CT images and NIH image 1.58 (NIH, U.S.A.) for image processing. Seven image were selected among the serial reconstructed cross-sectional images produced by Dentascan. Seven resliced cross-sectional images at the same position were obtained at the personal computer. Regression analysis of the measurements of PC group was done against those of DS group. Measurements of the bone height and width at the reformer cross-sectional images using Mac-compatible computer was highly correlated with those using workstation with Dentascan software(height : r2= 0.999, p<0.001, width : r2= 0.993, p <0.001). So, it is considered that we can use a personal computer with inexpensive software for the dental implant planning, instead of the expensive software and workstation.

  • PDF

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

A Study on the Color Change in a Union Fabric simulated using a 3-dimensional CAD Software and Image Analysis

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.10 no.6
    • /
    • pp.9-15
    • /
    • 2006
  • Colors of textile products or fashionable clothing play one of the most important roles. From the point of visual cues, the realism of an image is the result of a good interaction of local light scattering or transmittance model applied. A 3-dimensional CAD software was used to construct a solid plain fabric model. In order to simulate a union fabric with different warp and filling colors, rendering was performed on the fabric model. It was demonstrated that the iridescent effect, pearl effect, or superficial color change effect of the union fabric during wearer's movement could be explained using the fabric models at inclined fabric positions during viewer's observation.

Smart Rectification on Satellite images

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.75-80
    • /
    • 2002
  • The mainly used technique to rectify satellite images with distortion is to develop a mathematical relationship between the pixel coordinates on the image and the corresponding points on the ground. By defining the relationship between two coordinate systems, a polynomial model is designed and various linear transformations are used. These GCP based geometric correction has performed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The highly variant height of region is resampled with distortion in the rectified image. To solve this problem this paper proposed the TIN-based rectification on a satellite image. The TIN based rectification is good to correct local distortion, but insufficient to reflect overall structure of one scene. So, this paper shows the experimental result and the analysis of each rectification model. It also describes the relationship GCP distribution and rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

  • PDF

Adaptive reversible image watermarking algorithm based on DE

  • Zhang, Zhengwei;Wu, Lifa;Yan, Yunyang;Xiao, Shaozhang;Gao, Shangbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1761-1784
    • /
    • 2017
  • In order to improve the embedding rate of reversible watermarking algorithm for digital image and enhance the imperceptibility of the watermarked image, an adaptive reversible image watermarking algorithm based on DE is proposed. By analyzing the traditional DE algorithm and the generalized DE algorithm, an improved difference expansion algorithm is proposed. Through the analysis of image texture features, the improved algorithm is used for embedding and extracting the watermark. At the same time, in order to improve the embedding capacity and visual quality, the improved algorithm is optimized in this paper. Simulation results show that the proposed algorithm can not only achieve the blind extraction, but also significantly heighten the embedded capacity and non-perception. Moreover, compared with similar algorithms, it is easy to implement, and the quality of the watermarked images is high.