• Title/Summary/Keyword: illumina sequencing

Search Result 156, Processing Time 0.029 seconds

Relationships among bedding materials, bedding bacterial composition and lameness in dairy cows

  • Li, Han;Wang, Xiangming;Wu, Yan;Zhang, Dingran;Xu, Hongyang;Xu, Hongrun;Xing, Xiaoguang;Qi, Zhili
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1559-1568
    • /
    • 2021
  • Objective: Bedding materials directly contact hooves of dairy cows and they may serve as environmental sources of lameness-associated pathogen. However, the specific composition of bacteria hidden in bedding materials is still not clear. The aim of this study was to determine the effect bedding material and its bacterial composition has on lameness of Holstein heifers. Methods: Forty-eight Holstein heifers with similar body weights were randomly assigned into three groups including sand bedding (SB), concrete floor (CF), and compost bedding (CB). Hock injuries severity and gait performance of dairy cows were scored individually once a week. Blood samples were collected at the end of the experiment and bedding material samples were collected once a week for Illumina sequencing. Results: The CF increased visible hock injuries severity and serum biomarkers of joint damage in comparison to SB and CB groups. Besides, Illumina sequencing and analysis showed that the bacterial community of CB samples had higher similarity to that of SB samples than CF samples. Bacteria in three bedding materials were dominated by gastrointestinal bacteria and organic matter-degrading bacteria, such as Actinobacteria, Firmicutes, and norank JG30-KF-cM45. Lameness-associated Spirochaetaceae and Treponeme were only detected in SB and CB samples with a very low relative abundance (0% to 0.08%). Conclusion: The bacterial communities differed among bedding materials. However, the treponemes pathogens involved in the pathogenesis of lameness may not be a part of microbiota in bedding materials of dairy cows.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

The strategy and current status of Brassica rapa genome project (배추 유전체 염기서열 해독 전략과 현황)

  • Mun, Jeong-Hwan;Kwon, Soo-Jin;Park, Beom-Seok
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Brassica rapa is considered an ideal candidate to act as a reference species for Brassica genomic studies. Among the three basic Brassica species, B. rapa (AA genome) has the smallest genome (529 Mbp), compared to B. nigra (BB genome, 632 Mbp) and B. oleracea (CC genome, 696 Mbp). There is also a large collection of available cultivars of B. rapa, as well as a broad array of B. rapa genomic resources available. Under international consensus, various genomic studies on B. rapa have been conducted, including the construction of a physical map based on 22.5X genome coverage, end sequencing of 146,000 BACs, sequencing of >150,000 expressed sequence tags, and successful phase 2 shotgun sequencing of 589 euchromatic region-tiling BACs based on comparative positioning with the Arabidopsis genome. These sequenced BACs mapped onto the B. rapa genome provide beginning points for genome sequencing of each chromosome. Applying this strategy, all of the 10 chromosomes of B. rapa have been assigned to the sequencing centers in seven countries, Korea, UK, China, India, Canada, Australia, and Japan. The two longest chromosomes, A3 and A9, have been sequenced except for several gaps, by NAAS in Korea. Meanwhile a China group, including IVF and BGI, performed whole genome sequencing with Illumina system. These Sanger and NGS sequence data will be integrated to assemble a draft sequence of B. rapa. The imminent B. rapa genome sequence offers novel insights into the organization and evolution of the Brassica genome. In parallel, the transfer of knowledge from B. rapa to other Brassica crops would be expected.

Sequencing and Characterization of Divergent Marbling Levels in the Beef Cattle (Longissimus dorsi Muscle) Transcriptome

  • Chen, Dong;Li, Wufeng;Du, Min;Wu, Meng;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.158-165
    • /
    • 2015
  • Marbling is an important trait regarding the quality of beef. Analysis of beef cattle transcriptome and its expression profile data are essential to extend the genetic information resources and would support further studies on beef cattle. RNA sequencing was performed in beef cattle using the Illumina High-Seq2000 platform. Approximately 251.58 million clean reads were generated from a high marbling (H) group and low marbling (L) group. Approximately 80.12% of the 19,994 bovine genes (protein coding) were detected in all samples, and 749 genes exhibited differential expression between the H and L groups based on fold change (>1.5-fold, p<0.05). Multiple gene ontology terms and biological pathways were found significantly enriched among the differentially expressed genes. The transcriptome data will facilitate future functional studies on marbling formation in beef cattle and may be applied to improve breeding programs for cattle and closely related mammals.

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

A Study on Transcriptome Analysis Using de novo RNA-sequencing to Compare Ginseng Roots Cultivated in Different Environments

  • Yang, Byung Wook
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.5-5
    • /
    • 2018
  • Ginseng (Panax ginseng C.A. Meyer), one of the most widely used medicinal plants in traditional oriental medicine, is used for the treatment of various diseases. It has been classified according to its cultivation environment, such as field cultivated ginseng (FCG) and mountain cultivated ginseng (MCG). However, little is known about differences in gene expression in ginseng roots between field cultivated and mountain cultivated ginseng. In order to investigate the whole transcriptome landscape of ginseng, we employed High-Throughput sequencing technologies using the Illumina HiSeqTM2500 system, and generated a large amount of sequenced transcriptome from ginseng roots. Approximately 77 million and 87 million high-quality reads were produced in the FCG and MCG roots transcriptome analyses, respectively, and we obtained 256,032 assembled unigenes with an average length of 1,171 bp by de novo assembly methods. Functional annotations of the unigenes were performed using sequence similarity comparisons against the following databases: the non-redundant nucleotide database, the InterPro domains database, the Gene Ontology Consortium database, and the Kyoto Encyclopedia of Genes and Genomes pathway database. A total of 4,207 unigenes were assigned to specific metabolic pathways, and all of the known enzymes involved in starch and sucrose metabolism pathways were also identified in the KEGG library. This study indicated that alpha-glucan phosphorylase 1, putative pectinesterase/pectinesterase inhibitor 17, beta-amylase, and alpha-glucan phosphorylase isozyme H might be important factors involved in starch and sucrose metabolism between FCG and MCG in different environments.

  • PDF

Comprehensive Expression Analysis of Triterpenoid Biosynthesis Genes Using Pac-Bio Sequencing and rnaSPAdes assembly in Codonopsis lanceolata

  • Ji-Nam Kang;Si Myung Lee;Mi-Hwa Choi;Chang-Kug Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.253-253
    • /
    • 2022
  • Codonopsis lanceolata (C. lanceolata) has been widely used in East Asia as a traditional medicine to treat various diseases such as bronchitis, convulsions, cough, obesity, and hepatitis. C. lanceolata belonging to Campanulaceae contains bioactive compounds such as polyphenols, saponins, and steroids. However, despite the pharmacological significance of C. lanceolata, the genetic information of this plant is limited and there are few studies of its transcriptome. In this study, we constructed a unigene set of C. lanceolata using Pac-Bio sequencing. Furthermore, the reads generated from Pac-bio and Illumina sequencing were mixed and assembled using rnaSPAdes. All genes involved in the triterpenoid pathway, a major bioactive compounds of C. lanceolata, were searched from the two unigene sets and the expression profiles of these genes were analyzed. The results showed that lupeol, beta-amyrin, and dammarenediol synthesis genes were activated in the leaves and roots of C. lanceolata. In particular, the expression of genes related to lupeol synthesis was relatively high, suggesting that the main triterpenoid of C. lanceolata is lupeol. Transcriptome studies related to lupeol synthesis in C. lanceolata have been rarely reported. Lupeol has been reported to have pharmacological effects such as anti-inflammatory, anti-cancer, and anti-bacterial. This study suggests the importance of C. lanceolata as a lupeol producing plant.

  • PDF

Development of HLA-A, -B and -DR Typing Method Using Next-Generation Sequencing (차세대염기서열분석법을 이용한 HLA-A, -B 그리고 -DR 형별 분석법 개발)

  • Seo, Dong Hee;Lee, Jeong Min;Park, Mi Ok;Lee, Hyun Ju;Moon, Seo Yoon;Oh, Mijin;Kim, So Young;Lee, Sang-Heon;Hyeong, Ki-Eun;Hu, Hae-Jin;Cho, Dae-Yeon
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.310-319
    • /
    • 2018
  • Background: Research on next-generation sequencing (NGS)-based HLA typing is active. To resolve the phase ambiguity and long turn-around-time of conventional high resolution HLA typing, this study developed a NGS-based high resolution HLA typing method that can handle large-scale samples within an efficient testing time. Methods: For HLA NGS, the condition of nucleic acid extraction, library construction, PCR mechanism, and HLA typing with bioinformatics were developed. To confirm the accuracy of the NGS-based HLA typing method, the results of 192 samples HLA typed by SSOP and 28 samples typed by SBT compared to NGS-based HLA-A, -B and -DR typing. Results: DNA library construction through two-step PCR, NGS sequencing with MiSeq (Illumina Inc., San Diego, USA), and the data analysis platform were established. NGS-based HLA typing results were compatible with known HLA types from 220 blood samples. Conclusion: The NSG-based HLA typing method could handle large volume samples with high-throughput. Therefore, it would be useful for HLA typing of bone marrow donation volunteers.

Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics

  • Zhao, Tingting;Shen, Xiaojuan;Dai, Chang;Cui, Li
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.798-807
    • /
    • 2018
  • Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.

A Culture-Independent Comparison of Microbial Communities of Two Maturating Craft Beers Styles

  • Joao Costa;Isabel N. Sierra-Garcia;Angela Cunha
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.404-413
    • /
    • 2022
  • The process of manufacturing craft beer involves a wide variety of spontaneous microorganisms, acting in different stages of the brewing process, that contribute to the distinctive characteristics of each style. The objective of this work was to compare the structure of microbial communities associated with two different craft beer styles (Doppelbock and Märzen lagers), at a late maturation stage, and to identify discriminative, or style-specific taxa. Bacterial and fungal microbial communities were analyzed by Illumina sequencing of 16S rRNA gene of prokaryotes and the ITS 2 spacer of fungi (eukaryotes). Fungal communities in maturating beer were dominated by the yeast Dekkera, and by lactic acid (Lactobacillus and Pediococcus) and acetic acid (Acetobacter) bacteria. The Doppelbock barrels presented more rich and diverse fungal communities. The Märzen barrels were more variable in terms of structure and composition of fungal and bacterial communities, with occurrence of exclusive taxa of fungi (Aspergillus sp.) and bacteria (L. kimchicus). Minority bacterial taxa, differently represented in the microbiome of each barrel, may underlie the variability between barrels and ultimately, the distinctive traits of each style. The composition of the microbial communities indicates that in addition to differences related to upstream stages of the brewing process, the contact with the wood barrels may contribute to the definition of style-specific microbiological traits.