• 제목/요약/키워드: illumina

검색결과 283건 처리시간 0.03초

Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil

  • Wen, Zhong-Ling;Yang, Min-Kai;Fazal, Aliya;Liao, Yong-Hui;Cheng, Lin-Run;Hua, Xiao-Mei;Hu, Dong-Qing;Shi, Ji-Sen;Yang, Rong-Wu;Lu, Gui-Hua;Qi, Jin-Liang;Hong, Zhi;Qian, Qiu-Ping;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1169-1179
    • /
    • 2020
  • In this study, two soybean genotypes, i.e., aluminum-tolerant Baxi 10 (BX10) and aluminumsensitive Bendi 2 (BD2), were used as plant materials and acidic red soil was used as growth medium. The soil layers from the inside to the outside of the root are: rhizospheric soil after washing (WRH), rhizospheric soil after brushing (BRH) and rhizospheric soil at two sides (SRH), respectively. The rhizosphere bacterial communities were analyzed by high-throughput sequencing of V4 hypervariable regions of 16S rRNA gene amplicons via Illumina MiSeq. The results of alpha diversity analysis showed that the BRH and SRH of BX10 were significantly lower in community richness than that of BD2, while the WRH exhibited no significant difference between BX10 and BD2. Among the three sampling compartments of the same soybean genotype, WRH had the lowest community richness and diversity while showing the highest coverage. Beta diversity analysis results displayed no significant difference for any compartment between the two genotypes, or among the three different sampling compartments for any same soybean genotype. However, the relative abundance of major bacterial taxa, specifically nitrogen-fixing and/or aluminum-tolerant bacteria, was significantly different in the compartments of the BRH and/or SRH at phylum and genus levels, indicating genotype-dependent variations in rhizosphere bacterial communities. Strikingly, as compared with BRH and SRH, the WRH within the same genotype (BX10 or BD2) always had an enrichment effect on rhizosphere bacteria associated with nitrogen fixation.

RPSA Gene Mutants Associated with Risk of Colorectal Cancer among the Chinese Population

  • Zhang, Shan-Chun;Jin, Wen;Liu, Hui;Jin, Ming-Juan;Chen, Ze-Xin;Ding, Zhe-Yuan;Zheng, Shuang-Shuang;Wang, Li-Juan;Yu, Yun-Xian;Chen, Kun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7127-7131
    • /
    • 2013
  • The primary aim of this study was to evaluate the relationship of single nucleotide polymorphisms (SNPs) in ribosomal protein SA (RPSA) gene with colorectal cancer (CRC). A case-control study including 388 controls and 387 patients with CRC was conducted in a Chinese population. Information about socio-demography and living behavior factors was collected by a structured questionnaire. Three SNPs (rs2133579, rs2269349, rs7641291) in RPSA gene were genotyped by Illumina SnapShot method. Multiple logistic regression models were used for assessing the joint effects between tea consumption and SNPs on CRC. The subjects with rs2269349 CC genotype had a decreased risk for CRC (OR=0.60; 95%CI = 0.37-0.99), compared with TT/CT genotype after adjustment for covariates. A similar association of rs2269349 with rectal cancer was observed (OR=0.49; 95%CI=0.24-1.00). Further analyses indicated that this SNP could modify the protective effect of tea drinking on CRC. Among the subjects with rs2269349 TT/CT or rs2133579 AA/GA, there was a marginal significantly lower risk of CRC (OR and 95%CI: 0.63 and 0.39-1.01 for rs2269349; 0.64 and 0.40-1.02 for rs2133579) in tea-drinking subjects in comparison to non-tea-drinking subjects. Mutants in the RPSA gene might be associated with genetic susceptibility to CRC and influence the protective effect of tea consumption in the Chinese population.

Association between Interleukin 31 Receptor A Gene Polymorphism and Schizophrenia in Korean Population

  • Ban, Ju-Yeon;Kim, Su-Kang;Kim, Hak-Jae;Chung, Joo-Ho;Kim, Tae;Park, Jin-Kyung;Park, Hyun-Kyung;Kim, Jong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.205-209
    • /
    • 2008
  • Recently, Sun et al (2008) reported that the IL6R polymorphism is associated with schizophrenia. Therefore, to detect the association between polymorphisms of interleukin 31 receptor A (IL31RA) and schizophrenia, we genotyped 9 SNPs [rs9292101 (intron 1), rs1009639 (exon 2, Pr043Pro), rs2161582 (intron 2), rs68761890 (intron 5), rs16884629 (intron 6), rs11956465 (intron 12), rs12153724 (intron 12), and rs16884641 (intron 14)] using the Golden Gate assay on Illumina BeadStation 500 GX. Two hundred eighteen patients with schizophrenia and 379 normal subjects were recruited. Patients with schizophrenia were diagnosed according to DSM-IV, and control subjects without history of psychiatric disorders were selected. We used SNPStats, Haploview, HapAnalyzer, SNPAnalyzer, and Helixtree programs for the evaluation of genetic data. Of nine polymorphisms, three SNPs (rs9292101, rs1009639, and rs11956465) were associated with schizophrenia. The rs9292101 and rs11956465 showed significant associations with the risk of schizophrenia in the codominant [rs9292101, odds ratio (OR)=0.74, 95% confidence interval (CI)=0.58${\sim}$0.95, p=0.017] and recessive (rs11956465, OR=0.64, 95% CI=0.42${\sim}$0.96, p=0.034) models, respectively. The rs1009639 also was statistically related to schizophrenia in both codominant (OR=0.76, 95% CI=0.60${\sim}$0.97, p=0.025) and dominant (OR=0.66, 95% CI=0.44${\sim}$0.98, p=0.035) models. Two linkage disequilibrium (LD) blocks were made. In the analysis of haplotypes, a haplotype (GCT) in block 1 and a haplotype (CCACAG) in block 2 showed significant associations between schizophrenia and control groups (haplotype GCT, frequency=0.509, chi square=4.199, p=0.040; haplotype CCACAG, frequency=0.289, chi square=5.691, p=0.017). The results suggest that IL31RA may be associated with risk of schizophrenia in Korean population.

Fine mapping of rice bacterial leaf blight resistance loci to major Korean races of Xoo (Xanthomonas oryzae)

  • Lee, Myung-Chul;Choi, Yu-Mi;Lee, Sukyeung;Yoon, Hyemyeong;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.73-73
    • /
    • 2018
  • Bacterial leaf blight(BLB), caused by X. oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 192 accessions was used in the genome-wide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. A total of 192 accessions of rice germplasm were selected on the basis of the bioassay using four isolated races of Xoo such as K1, K2, K3 and K3a. The selected accessions was used to prepare 384-plex genotyping by sequencing (GBS) libraries and Illumina HiSeq 2000 paired- end read was used for GBS sequencing. GWAS was conducted using T ASSEL 5.0. The T ASSEL program uses a mixed linear model (MLM). T he results of the bioassay using a selected set of 192 accessions showed that a large number of accessions (93.75%) were resistant to K1 race, while the least number of accessions (34.37%) resisted K3a race. For races K2 and K3, the resistant germplasm proportion remained between 66.67 to 70.83%. T he genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than5 (K1 and K2) and more than4 (K3 and K3a) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. T hese SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races, whereas on chromosome 4, 6, 11, and 12 for K3 and K3a races. The significant loci detected have also been illustrated, NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice.

  • PDF

Transcriptome Profiling and Characterization of Drought-Tolerant Potato Plant (Solanum tuberosum L.)

  • Moon, Ki-Beom;Ahn, Dong-Joo;Park, Ji-Sun;Jung, Won Yong;Cho, Hye Sun;Kim, Hye-Ran;Jeon, Jae-Heung;Park, Youn-il;Kim, Hyun-Soon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.979-992
    • /
    • 2018
  • Potato (Solanum tuberosum L.) is the third most important food crop, and breeding drought-tolerant varieties is vital research goal. However, detailed molecular mechanisms in response to drought stress in potatoes are not well known. In this study, we developed EMS-mutagenized potatoes that showed significant tolerance to drought stress compared to the wild-type (WT) 'Desiree' cultivar. In addition, changes to transcripts as a result of drought stress in WT and drought-tolerant (DR) plants were investigated by de novo assembly using the Illumina platform. One-week-old WT and DR plants were treated with -1.8 Mpa polyethylene glycol-8000, and total RNA was prepared from plants harvested at 0, 6, 12, 24, and 48 h for subsequent RNA sequencing. In total, 61,100 transcripts and 5,118 differentially expressed genes (DEGs) displaying up- or down-regulation were identified in pairwise comparisons of WT and DR plants following drought conditions. Transcriptome profiling showed the number of DEGs with up-regulation and down-regulation at 909, 977, 1181, 1225 and 826 between WT and DR plants at 0, 6, 12, 24, and 48 h, respectively. Results of KEGG enrichment showed that the drought tolerance mechanism of the DR plant can mainly be explained by two aspects, the 'photosynthetic-antenna protein' and 'protein processing of the endoplasmic reticulum'. We also divided eight expression patterns in four pairwise comparisons of DR plants (DR0 vs DR6, DR12, DR24, DR48) under PEG treatment. Our comprehensive transcriptome data will further enhance our understanding of the mechanisms regulating drought tolerance in tetraploid potato cultivars.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

A Whole Genome Association Study on Meat Quality Traits Using High Density SNP Chips in a Cross between Korean Native Pig and Landrace

  • Lee, K.T.;Lee, Y.M.;Alam, M.;Choi, B.H.;Park, M.R.;Kim, K.S.;Kim, T.H.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권11호
    • /
    • pp.1529-1539
    • /
    • 2012
  • A whole genome association (WGA) study was performed to detect significant polymorphisms for meat quality traits in an $F_2$ cross population (N = 478) that were generated with Korean native pig sires and Landrace dams in National Livestock Research Institute, Songwhan, Korea. The animals were genotyped using Illumina porcine 60k SNP beadchips, in which a set of 46,865 SNPs were available for the WGA analyses on ten carcass quality traits; live weight, crude protein, crude lipids, crude ash, water holding capacity, drip loss, shear force, CIE L, CIE a and CIE b. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model, after adjusting for sex, sire and slaughter stage as fixed effects. With the significant SNPs for each trait (p<0.001), a stepwise regression procedure was applied to determine the best set of SNPs with the additive and/or dominance effects. A total of 106 SNPs, or quantitative trait loci (QTL) were detected, and about 32 to 66% of the total phenotypic variation was explained by the significant SNPs for each trait. The QTL were identified in most porcine chromosomes (SSCs), in which majority of the QTL were detected in SSCs 1, 2, 12, 13, 14 and 16. Several QTL clusters were identified on SSCs 12, 16 and 17, and a cluster of QTL influencing crude protein, crude lipid, drip loss, shear force, CIE a and CIE b were located between 20 and 29 Mb of SSC12. A pleiotropic QTL for drip loss, CIE L and CIE b was also detected on SSC16. These QTL need to be validated in commercial pig populations for genetic improvement in meat quality via marker-assisted selection.

Diversity of bacterial community during ensiling and subsequent exposure to air in whole-plant maize silage

  • Hu, Zongfu;Chang, Jie;Yu, Jianhua;Li, Shuguo;Niu, Huaxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1464-1473
    • /
    • 2018
  • Objective: To describe in-depth sequencing, the bacterial community diversity and its succession during ensiling of whole-plant maize and subsequent exposure to air. Methods: The microbial community dynamics of fermented whole-plant maize for 60 days (sampled on day 5, 10, 20, 40, 60) and subsequent aerobic exposure (sampled on day 63 after exposure to air for 3 days) were explored using Illumina Miseq sequence platform. Results: A total of 227,220 effective reads were obtained. At the genus level, there were 12 genera with relative abundance >1%, Lactobacillus, Klebsiella, Sporolactobacillus, Norank-c-cyanobacteria, Pantoea, Pediococcus, Rahnella, Sphingomonas, Serratia, Chryseobacterium, Sphingobacterium, and Lactococcus. Lactobacillus consistently dominated the bacterial communities with relative abundance from 49.56% to 64.17% during the ensiling process. Klebsiella was also an important succession bacterium with a decrease tendency from 15.20% to 6.41% during the ensiling process. The genus Sporolactobacillus appeared in late-ensiling stages with 7.70% abundance on day 40 and 5.32% on day 60. After aerobic exposure, the Lactobacillus decreased its abundance from 63.2% on day 60 to 45.03% on d 63, and Klebsiella from 5.51% to 5.64%, while Sporolactobacillus greatly increased its abundance to 28.15%. These bacterial genera belong to 5 phyla: Firmicutes (relative abundance: 56.38% to 78.43%) was dominant, others were Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria. The bacterial communities clearly clustered into early-ensiling (d 5), medium-ensiling (d 10, d 20), late-ensiling (d 40, d 60), and aerobic exposure (d 63) clusters, with early- and late-ensiling communities more like each other than to the aerobic exposure communities. Conclusion: High-throughput sequencing based on 16S rRNA genes proved to be a useful method to explore bacterial communities of silage. The results indicated that the bacterial communities varied during fermentation and more dramatically during aerobic exposure. The study is valuable for understanding the mechanism of population change and the relationship between bacteria and ensilage characteristics.

Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Body Conformation Traits in a Hanwoo Population

  • Alama, M.;Lee, Y.M.;Park, B.L.;Kim, J.H.;Lee, S.S.;Shin, H.D.;Kim, K.S.;Kim, N.S.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권3호
    • /
    • pp.322-329
    • /
    • 2011
  • A whole genome association (WGA) study was conducted to identify quantitative trait loci (QTL) for body conformation traits in Hanwoo cattle. The phenotypes of 497 steers were recorded from the Hanwoo Improvement Center of National Agricultural Cooperative Federation, Seosan, Korea, and analyzed using the Illumina Bovine 50 k SNP chip. A set of 35,987 SNPs that were available in the Hanwoo population was selected from the chip. After adjustments for the effects of year-season of birth, region and sire, phenotypes were regressed on each SNP using a linear regression model. Three hundred nineteen SNPs were detected for the ten conformation traits (p<0.003). For the significant SNPs, stepwise regression procedures were applied to determine best sets of markers. A total of 72 SNPs were selected (p<0.001), for which the sets of 5, 9, 10, 9, 8, 11, 4, 6, 3 and 7 SNPs were determined for height at withers, rump height, body length, chest depth, chest width, rump length, hip width, thurl width, pinbone width and heart girth, respectively. About 7-26% of the total phenotypic variation was explained by the set of SNPs for each trait. QTL for the conformation traits were harbored on most bovine chromosomes (BTAs). Four SNPs with pleiotropic effects on height at withers and rump height were detected on BTAs 3, 4, 6 and 16. A SNP with pleiotropic effects on chest width and rump length was also detected on BTA10. Two QTL regions, i.e. between 87 and 97 Mb in BTA3 and between 41 and 44 Mb in BTA7, were found, in which SNPs were detected for the five and three conformation traits, respectively. The detected SNPs need to be validated in other Hanwoo populations for commercial application to the genetic improvement of conformation characteristics in Hanwoo via marker-assisted selection (MAS).

Whole-genome association and genome partitioning revealed variants and explained heritability for total number of teats in a Yorkshire pig population

  • Uzzaman, Md. Rasel;Park, Jong-Eun;Lee, Kyung-Tai;Cho, Eun-Seok;Choi, Bong-Hwan;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.473-479
    • /
    • 2018
  • Objective: The study was designed to perform a genome-wide association (GWA) and partitioning of genome using Illumina's PorcineSNP60 Beadchip in order to identify variants and determine the explained heritability for the total number of teats in Yorkshire pig. Methods: After screening with the following criteria: minor allele frequency, $MAF{\leq}0.01$; Hardy-Weinberg equilibrium, $HWE{\leq}0.000001$, a pair-wise genomic relationship matrix was produced using 42,953 single nucleotide polymorphisms (SNPs). A genome-wide mixed linear model-based association analysis (MLMA) was conducted. And for estimating the explained heritability with genome- or chromosome-wide SNPs the genetic relatedness estimation through maximum likelihood approach was used in our study. Results: The MLMA analysis and false discovery rate p-values identified three significant SNPs on two different chromosomes (rs81476910 and rs81405825 on SSC8; rs81332615 on SSC13) for total number of teats. Besides, we estimated that 30% of variance could be explained by all of the common SNPs on the autosomal chromosomes for the trait. The maximum amount of heritability obtained by partitioning the genome were $0.22{\pm}0.05$, $0.16{\pm}0.05$, $0.10{\pm}0.03$ and $0.08{\pm}0.03$ on SSC7, SSC13, SSC1, and SSC8, respectively. Of them, SSC7 explained the amount of estimated heritability along with a SNP (rs80805264) identified by genome-wide association studies at the empirical p value significance level of 2.35E-05 in our study. Interestingly, rs80805264 was found in a nearby quantitative trait loci (QTL) on SSC7 for the teat number trait as identified in a recent study. Moreover, all other significant SNPs were found within and/or close to some QTLs related to ovary weight, total number of born alive and age at puberty in pigs. Conclusion: The SNPs we identified unquestionably represent some of the important QTL regions as well as genes of interest in the genome for various physiological functions responsible for reproduction in pigs.