References
- Zheng ML, Niu DZ, Jiang D, et al. Dynamics of microbial community during ensiling direct-cut alfalfa with and without LAB inoculant and sugar. J Appl Microbiol 2017;122:1456-70. https://doi.org/10.1111/jam.13456
- McGarvey JA, Franco RB, Palumbo JD, et al. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air. J Appl Microbiol 2013;114:1661-70. https://doi.org/10.1111/jam.12179
- Li ZH, Rui JP, Li XZ, et al. Bacterial community succession and metabolite changes during doubanjiang-meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L.) paste. Food Chem 2017;218:534-42. https://doi.org/10.1016/j.foodchem.2016.09.104
- Yang L, Yang HL, Tu ZC, Wang XL. High-throughput sequencing of microbial community diversity and dynamics during Douchi fermentation. PLoS One 2016;11:e0168166. https://doi.org/10.1371/journal.pone.0168166
- Lin C, Bolsen KK, Brent BE, Daniel YCF. Epiphytic lactic acid bacteria succession during the pre-ensiling and ensiling periods of alfalfa and maize. J Appl Microbiol 1992;73:375-87.
-
Zhou Y, Drouin P, Lafreniere C. Effect of temperature (
$5-25^{\circ}C$ ) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage. J Appl Microbiol 2016;121:657-71. https://doi.org/10.1111/jam.13198 - Santos AO, Avila CLS, Pinto JC, et al. Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. J Appl Microbiol 2015;120:266-79.
- Owens VN, Albrecht KA, Muck RE. Protein degradation and ensiling characteristics of red clover and alfalfa wilted under varying levels of shade. Can J Plant Sci 1999;79:209-22. https://doi.org/10.4141/P98-034
- Ni K, Wang F, Zhu B, et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour Technol 2017;238:706-15. https://doi.org/10.1016/j.biortech.2017.04.055
- Zahiroddini H, Baah J, Absalom W, McAllister TA. Effect of an inoculants and hydrolytic enzymes on fermentation and nutritive value of whole crop barley silage. Anim Feed Sci Technol 2004;117:317-30. https://doi.org/10.1016/j.anifeedsci.2004.08.013
- Baelum J, Henriksen T, Hansen HC, Jacobsen CS. Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Appl Environ Microbiol 2006;72:1476-86. https://doi.org/10.1128/AEM.72.2.1476-1486.2006
- Dennis KL, Wang Y, Blatner NR, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 2013;73:5905-13. https://doi.org/10.1158/0008-5472.CAN-13-1511
- Ma Y, Li B, Wang C, et al. 5-HTTLPR polymorphism modulates neural mechanisms of negative self-reflection. Cereb Cortex 2014;24:2421-9. https://doi.org/10.1093/cercor/bht099
- Edgar RC, Haas BJ, Clemente JC, Christopher Q, Rob K. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194-200. https://doi.org/10.1093/bioinformatics/btr381
- Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:590-6.
- Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNAbased studies. PLoS One 2011;6:e27310. https://doi.org/10.1371/journal.pone.0027310
- Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 2013;7:1069-79. https://doi.org/10.1038/ismej.2013.2
- Xiao Y, Li K, Xiang Y, et al. The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs. Asian-Australas J Anim Sci 2017;30:1456-63. https://doi.org/10.5713/ajas.16.0746
- Parvin S, Wang C, Li Y. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. Anim Feed Sci Technol 2010;160:160-6. https://doi.org/10.1016/j.anifeedsci.2010.07.010
- Li YB, Nishino N. Effects of inoculation of Lactobacillus rhamnosus and Lactobacillus buchneri on fermentation, aerobic stability and microbial communities in whole crop corn silage. Grassl Sci 2011;57:184-91. https://doi.org/10.1111/j.1744-697X.2011.00226.x
- Li Y, Nishino N. Monitoring the bacterial community of maize silage stored in a bunker silo inoculated with Enterococcus faecium, Lactbacillus plantarum and Lactobacillus buchneri. J Appl Microbiol 2011;110:1561-70. https://doi.org/10.1111/j.1365-2672.2011.05010.x
- Muck RE. Factors influencing silage quality and their implication for management. J Dairy Sci 1988;71:2992-3002. https://doi.org/10.3168/jds.S0022-0302(88)79897-5
- Santos AO, Avila CLS, Schwan RF. Selection of tropical lactic acid bacteria for enhancing the quality of maize silage. J Dairy Sci 2013;96:7777-89. https://doi.org/10.3168/jds.2013-6782
- Muck R. Recent advances in silage microbiology. Agric Food Sci 2013;22:3-15. https://doi.org/10.23986/afsci.6718
- Gharechahi J, Kharazian ZA, Sarikhan S, et al. The dynamics of the bacterial communities developed in maize silage. Microb Biotechnol 2017;10:1663-77. https://doi.org/10.1111/1751-7915.12751
- Meeske R, van der Merwe GD, Greyling JF, Cruywagen CW. The effect of the addition of a lactic acid bacterial inoculant to maize at ensiling on silage composition, silage intake, milk production and milk composition. S Afr J Anim Sci 2002;32:263-70.
- Arasu MV, Jung MW, Ilavenil S, et al. Characterization, phylogenetic affiliation and probiotic properties of high cell density Lactobacillus strains recovered from silage. J Sci Food Agric 2014;94:2429-40. https://doi.org/10.1002/jsfa.6573
- Han J, Hou XZ, Yang K, et al. Study of Lactobacillus population diversity in corn silage by PCR-DGGE in different regions of Inner Mongolia. Chin J Anim Nutr 2009;36:526-32.
- Kumiko N, Taniguchi M, Ujike S, et al. Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Appl Environ Microbiol 2001;67:986-90. https://doi.org/10.1128/AEM.67.2.986-990.2001
- Navarretebolanos JL, Jimenezislas H, Botelloalvarez E, Ricomartinez R. Mixed culture optimization for marigold flower ensilage via experimental design and response surface methodology. J Agric Food Chem 2003;51:2206-11. https://doi.org/10.1021/jf0257650
- Ni KK, Minh TT, Tu TT, et al. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl Microbiol Biotechnol 2017; 101:1385-94. https://doi.org/10.1007/s00253-016-7900-2
- Yang X, Kim DS, Choi HS, et al. Repeated batch production of 1, 3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chem Eng J 2017;314:660-9. https://doi.org/10.1016/j.cej.2016.12.029
- Heron SJE, Wilkinson JF, Duffus CM. Enterobacteria associated with grass and silages. J Appl Microbiol 1993;75:13-7.
- Li Y, Nishino N. Changes in the bacterial community and composition of fermentation products during ensiling of wilted Italian ryegrass and wilted guinea grass silages. Anim Sci J 2013;84:607-12. https://doi.org/10.1111/asj.12046
- Li JH, Sun JF, Wu B, He BF. Combined utilization of nutrients and sugar derived from wheat bran for d-Lactate fermentation by Sporolactobacillus inulinus YBS1-5. Bioresour Technol 2017; 229:33-8. https://doi.org/10.1016/j.biortech.2016.12.101
- Kharazian ZA, Jouzani GS, Aghdasi M, et al. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control 2017;110:33-43. https://doi.org/10.1016/j.biocontrol.2017.04.004
- Duniere L, Xu SW, Long J, et al. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol 2017;17:50. https://doi.org/10.1186/s12866-017-0947-0
- Odum EP. The strategy of ecosystem development. Science 1969;164:262-70. https://doi.org/10.1126/science.164.3877.262
Cited by
- Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview vol.35, pp.5, 2018, https://doi.org/10.1007/s11274-019-2649-2
- Lactic acid bacteria diversity in corn silage produced in Minas Gerais (Brazil) vol.69, pp.13, 2018, https://doi.org/10.1007/s13213-019-01528-w
- Silage fermentation—updates focusing on the performance of micro‐organisms vol.128, pp.4, 2020, https://doi.org/10.1111/jam.14450
- A mixture of potassium sorbate and sodium benzoate improved fermentation quality of whole‐plant corn silage by shifting bacterial communities vol.128, pp.5, 2018, https://doi.org/10.1111/jam.14571
- Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding vol.103, pp.7, 2020, https://doi.org/10.3168/jds.2019-17918
- Effect of Different Regions and Ensiling Periods on Fermentation Quality and the Bacterial Community of Whole-Plant Maize Silage vol.12, pp.None, 2018, https://doi.org/10.3389/fmicb.2021.743695
- Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM‐I‐4785 vol.10, pp.1, 2021, https://doi.org/10.1002/mbo3.1153
- Effects of various epiphytic microbiota inoculation on the fermentation quality and microbial community dynamics during the ensiling of sterile Napier grass vol.130, pp.5, 2021, https://doi.org/10.1111/jam.14896
- Exploring the bacterial community and fermentation characteristics during silage fermentation of abandoned fresh tea leaves vol.283, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.131234