• Title/Summary/Keyword: illumina

Search Result 283, Processing Time 0.029 seconds

Evaluation of Genome Based Estimated Breeding Values for Meat Quality in a Berkshire Population Using High Density Single Nucleotide Polymorphism Chips

  • Baby, S.;Hyeong, K.E.;Lee, Y.M.;Jung, J.H.;Oh, D.Y.;Nam, K.C.;Kim, T.H.;Lee, H.K.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1540-1547
    • /
    • 2014
  • The accuracy of genomic estimated breeding values (GEBV) was evaluated for sixteen meat quality traits in a Berkshire population (n = 1,191) that was collected from Dasan breeding farm, Namwon, Korea. The animals were genotyped with the Illumina porcine 62 K single nucleotide polymorphism (SNP) bead chips, in which a set of 36,605 SNPs were available after quality control tests. Two methods were applied to evaluate GEBV accuracies, i.e. genome based linear unbiased prediction method (GBLUP) and Bayes B, using ASREML 3.0 and Gensel 4.0 software, respectively. The traits composed different sets of training (both genotypes and phenotypes) and testing (genotypes only) data. Under the GBLUP model, the GEBV accuracies for the training data ranged from $0.42{\pm}0.08$ for collagen to $0.75{\pm}0.02$ for water holding capacity with an average of $0.65{\pm}0.04$ across all the traits. Under the Bayes B model, the GEBV accuracy ranged from $0.10{\pm}0.14$ for National Pork Producers Council (NPCC) marbling score to $0.76{\pm}0.04$ for drip loss, with an average of $0.49{\pm}0.10$. For the testing samples, the GEBV accuracy had an average of $0.46{\pm}0.10$ under the GBLUP model, ranging from $0.20{\pm}0.18$ for protein to $0.65{\pm}0.06$ for drip loss. Under the Bayes B model, the GEBV accuracy ranged from $0.04{\pm}0.09$ for NPCC marbling score to $0.72{\pm}0.05$ for drip loss with an average of $0.38{\pm}0.13$. The GEBV accuracy increased with the size of the training data and heritability. In general, the GEBV accuracies under the Bayes B model were lower than under the GBLUP model, especially when the training sample size was small. Our results suggest that a much greater training sample size is needed to get better GEBV accuracies for the testing samples.

A genome-wide association study of social genetic effects in Landrace pigs

  • Hong, Joon Ki;Jeong, Yong Dae;Cho, Eun Seok;Choi, Tae Jeong;Kim, Yong Min;Cho, Kyu Ho;Lee, Jae Bong;Lim, Hyun Tae;Lee, Deuk Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.784-790
    • /
    • 2018
  • Objective: The genetic effects of an individual on the phenotypes of its social partners, such as its pen mates, are known as social genetic effects. This study aims to identify the candidate genes for social (pen-mates') average daily gain (ADG) in pigs by using the genome-wide association approach. Methods: Social ADG (sADG) was the average ADG of unrelated pen-mates (strangers). We used the phenotype data (16,802 records) after correcting for batch (week), sex, pen, number of strangers (1 to 7 pigs) in the pen, full-sib rate (0% to 80%) within pen, and age at the end of the test. A total of 1,041 pigs from Landrace breeds were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel, which comprised 61,565 single nucleotide polymorphism (SNP) markers. After quality control, 909 individuals and 39,837 markers remained for sADG in genome-wide association study. Results: We detected five new SNPs, all on chromosome 6, which have not been associated with social ADG or other growth traits to date. One SNP was inside the prostaglandin $F2{\alpha}$ receptor (PTGFR) gene, another SNP was located 22 kb upstream of gene interferon-induced protein 44 (IFI44), and the last three SNPs were between 161 kb and 191 kb upstream of the EGF latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) gene. PTGFR, IFI44, and ELTD1 were never associated with social interaction and social genetic effects in any of the previous studies. Conclusion: The identification of several genomic regions, and candidate genes associated with social genetic effects reported here, could contribute to a better understanding of the genetic basis of interaction traits for ADG. In conclusion, we suggest that the PTGFR, IFI44, and ELTD1 may be used as a molecular marker for sADG, although their functional effect was not defined yet. Thus, it will be of interest to execute association studies in those genes.

Genetic Diversity of the Slender Shinner(Pseudopuntungia tenuicorpa) and Its Conservational Implications (가는돌고기(Pseudopuntungia tenuicorpa) 보전을 위한 유전적 다양성 연구)

  • Kim, Dong-Young;Suk, Ho Young
    • Korean Journal of Ichthyology
    • /
    • v.32 no.2
    • /
    • pp.39-48
    • /
    • 2020
  • The slender shinner (Pseudopungtungia tenuicorpa), a tiny freshwater fish of about 8 to 10 cm belonging to Cyprinidae, is an endangered species found only in the Han and Imjin Rivers on the Korean Peninsula. During the breeding season, this species spawns in nests of Coreoperca herzi, a predator of this species, or small crevices on rocks. This unique reproductive ecology can make this species more vulnerable to anthropogenic perturbance that can further limit the places to spawn. Here, mtDNA and microsatellite loci were analyzed to identify the genetic diversity and structure of slender shinners and further to provide the basic data necessary for the conservation planning of this species. A total of 28 polymorphic microsatellite markers were developed using Illumina paired-end sequencing, and 67 slender shinners collected from three localities in the Han River were genotyped using these loci. This species showed a remarkably high level of genetic diversity with mean expected heterozygosity of 0.914 and mean allele number per locus of 27.9, and no signature of drastic demographic decline was detected. As a result of our microsatellite analysis, the genetic structure between the two stems of the Han River, North Han and South Han, was prominent. Such a genetic structure was also evident in the sequence analysis of 14 haplotypes obtained from mtDNA control region. Although slender shinners are only found in very limited areas around the world, the genetic structure indicates that there is a block of gene flow among the populations, which should be reviewed in the future if management and restoration of this species is needed.

Ovarian transcriptomic analysis of Shan Ma ducks at peak and late stages of egg production

  • Zhu, ZhiMing;Miao, ZhongWei;Chen, HongPing;Xin, QingWu;Li, Li;Lin, RuLong;Huang, QinLou;Zheng, NenZhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1215-1224
    • /
    • 2017
  • Objective: To assess the differences in ovarian transcriptomes in Shan Ma ducks between their peak and late stages of egg production, and to obtain new transcriptomic data of these egg-producing ducks. Methods: The Illumina HiSeq 2000 system was used for high throughput sequencing of ovarian transcriptomes from Shan Ma ducks at their peak or late stages of egg production. Results: Greater than 93% of the sequencing data had a base quality score (Q score) that was not less than 20 (Q20). From ducks at their peak stage of egg production, 42,782,676 reads were obtained, with 4,307,499,083 bp sequenced. From ducks at their late stage of egg production, 45,316,166 reads were obtained, with 4,562,063,363 bp sequenced. A comparison of the two datasets identified 2,002 differentially expressed genes, with 790 upregulated and 1,212 downregulated. Further analysis showed that 1,645 of the 2,002 differentially expressed genes were annotated in the non-redundant (NR) database, with 646 upregulated and 999 downregulated. Among the differentially expressed genes with annotations in the NR database, 696 genes were functionally annotated in the clusters of orthologous groups of proteins database, involving 25 functional categories. One thousand two hundred four of the differentially expressed genes with annotations in the NR database were functionally annotated in the gene ontology (GO) database, and could be divided into three domains and 56 categories. The three domains were cellular component, molecular function, and biological process. Among the genes identified in the GO database, 451 are involved in development and reproduction. Analysis of the differentially expressed genes with annotations in the NR database against the Kyoto encyclopedia of genes and genomes database revealed that 446 of the genes could be assigned to 175 metabolic pathways, of which the peroxisome proliferator-activated receptor signaling pathway, insulin signaling pathway, fructose and mannose metabolic pathways, gonadotropin releasing hormone signaling pathway and transforming growth factor beta signaling pathway were significantly enriched. Conclusion: The differences in ovarian transcriptomes in Shan Ma ducks between their peak and late stages of egg production were elucidated, which greatly enriched the ovarian transcriptomic information of egg-producing ducks.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

Association of Insulin-like growth factor binding protein 2 genotypes with growth, carcass and meat quality traits in pigs

  • Prasongsook, Sombat;Choi, Igseo;Bates, Ronald O.;Raney, Nancy E.;Ernst, Catherine W.;Tumwasorn, Sornthep
    • Journal of Animal Science and Technology
    • /
    • v.57 no.9
    • /
    • pp.31.1-31.11
    • /
    • 2015
  • Background: This study was conducted to investigate the potential association of variation in the insulin-like growth factor binding protein 2 (IGFBP2) gene with growth, carcass and meat quality traits in pigs. IGFBP2 is a member of the insulin-like growth factor binding protein family that is involved in regulating growth, and it maps to a region of pig chromosome 15 containing significant quantitative trait loci that affect economically important trait phenotypes. Results: An IGFBP2 polymorphism was identified in the Michigan State University (MSU) Duroc ${\times}$ Pietrain $F_2$ resource population (n = 408), and pigs were genotyped by MspI PCR-RFLP. Subsequently, a Duroc pig population from the National Swine Registry, USA, (n = 326) was genotyped using an Illumina Golden Gate assay. The IGFBP2 genotypic frequencies among the MSU resource population pigs were 3.43, 47.06 and 49.51 % for the AA, AB and BB genotypes, respectively. The genotypic frequencies for the Duroc pigs were 9.82, 47.85, and 42.33 % for the AA, AB and BB genotypes, respectively. Genotype effects (P < 0.05) were found in the MSU resource population for backfat thickness at $10^{th}$ rib and last rib as determined by ultrasound at 10, 13, 16 and 19 weeks of age, ADG from 10 to 22 weeks of age, and age to reach 105 kg. A genotype effect (P < 0.05) was also found for off test Longissimus muscle area in the Duroc population. Significant effects of IGFBP2 genotype (P < 0.05) were found for drip loss, 24 h postmortem pH, pH decline from 45 min to 24 h postmortem, subjective color score, CIE $L^*$ and $b^*$, Warner-Bratzler shear force, and sensory panel scores for juiciness, tenderness, connective tissue and overall tenderness in MSU resource population pigs. Genotype effects (P < 0.05) were found for 45-min pH, CIE $L^*$ and color score in the Duroc population. Conclusions: Results of this study revealed associations of the IGFBP2 genotypes with growth, carcass and meat quality traits in pigs. The results indicate IGFBP2 as a potential candidate gene for growth rate, backfat thickness, loin muscle area and some pork quality traits.

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Carcass Traits in Hanwoo Populations

  • Lee, Y.-M.;Han, C.-M.;Li, Yi;Lee, J.-J.;Kim, L.H.;Kim, J.-H.;Kim, D.-I.;Lee, S.-S.;Park, B.-L.;Shin, H.-D.;Kim, K.-S.;Kim, N.-S.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.417-424
    • /
    • 2010
  • The purpose of this study was to detect significant SNPs for carcass quality traits using DNA chips of high SNP density in Hanwoo populations. Carcass data of two hundred and eighty nine steers sired by 30 Korean proven sires were collected from two regions; the Hanwoo Improvement Center of National Agricultural Cooperative Federation in Seosan, Chungnam province and the commercial farms in Gyeongbuk province. The steers in Seosan were born between spring and fall of 2006 and those in Gyeonbuk between falls of 2004 and 2005. The former steers were slaughtered at approximately 24 months, while the latter steers were fed six months longer before slaughter. Among the 55,074 SNPs in the Illumina bovine 50K chip, a total of 32,756 available SNPs were selected for whole genome association study. After adjusting for the effects of sire, region and slaughter age, phenotypes were regressed on each SNP using a simple linear regression model. For the significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were selected using a stepwise regression procedure, and inclusion and exclusion of each SNP out of the model was determined at the p<0.001 level. A total of 118 SNPs were detected; 15, 20, 22, 28, 20, and 13 SNPs for final weight before slaughter, carcass weight, backfat thickness, weight index, longissimus dorsi muscle area, and marbling score, respectively. Among the significant SNPs, the best set of 44 SNPs was determined by stepwise regression procedures with 7, 9, 6, 9, 7, and 6 SNPs for the respective traits. Each set of SNPs per trait explained 20-40% of phenotypic variance. The number of detected SNPs per trait was not great in whole genome association tests, suggesting additional phenotype and genotype data are required to get more power to detect the trait-related SNPs with high accuracy for estimation of the SNP effect. These SNP markers could be applied to commercial Hanwoo populations via marker-assisted selection to verify the SNP effects and to improve genetic potentials in successive generations of the Hanwoo populations.

Current status and prospects of kiwifruit (Actinidia chinensis) genomics (참다래 유전체 연구 동향)

  • Kim, Seong-Cheol;Kim, Ho Bang;Joa, Jae-Ho;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.342-349
    • /
    • 2015
  • Kiwifruit is a new fruit crop that was commercialized in the late 1970s. Recently, its cultivation and consumption have increased rapidly worldwide. Kiwifruit is a dioecious, deciduous, and climbing plant having fruit with hairs and various flesh colors and a variation in ploidy level; however, the industry consists of very simple cultivars or genotypes. The need for efficient cultivar improvement together with the evolutional and biological perspectives based on unique plant characteristics, have recently encouraged genome analysis and bioinformatics application. The draft genome sequence and chloroplast genome sequence of kiwifruit were released in 2013 and 2015, respectively; and gene annotation has been in progress. Recently, transcriptome analysis has shifted from previous ESTs analysis to the RNA-seq platform for intensive exploration of controlled genetic expression and gene discovery involved in fruit ascorbic acid biosynthesis, flesh coloration, maturation, and vine bacterial canker tolerance. For improving conventional breeding efficiency, molecular marker development and genetic linkage map construction have advanced from basic approaches using RFLP, RAPD, and AFLP to the development of NGS-based SSR and SNP markers linked to agronomically important traits and the construction of highly saturated linkage maps. However, genome and transcriptome studies have been limited in Korea. In the near future, kiwifruit genome and transcriptome studies are expected to translate to the practical application of molecular breeding.

A Genome-Wide Study of Moyamoya-Type Cerebrovascular Disease in the Korean Population

  • Joo, Sung-Pil;Kim, Tae-Sun;Lee, Il-Kwon;Kim, Joon-Tae;Park, Man-Seok;Cho, Ki-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2011
  • Objective : Structural genetic variation, including copy-number variation (CNV), constitutes a substantial fraction of total genetic variability, and the importance of structural variants in modulating susceptibility is increasingly being recognized. CNV can change biological function and contribute to pathophysiological conditions of human disease. Its relationship with common, complex human disease in particular is not fully understood. Here, we searched the human genome to identify copy number variants that predispose to moya-moya type cerebrovascular disease. Methods : We retrospectively analyzed patients who had unilateral or bilateral steno-occlusive lesions at the cerebral artery from March, 2007, to September, 2009. For the 20 subjects, including patients with moyamoya type pathologies and three normal healthy controls, we divided the subjects into 4 groups : typical moyamoya (n=6), unilateral moyamoya (n=9), progression unilateral to typical moyamoya (n=2) and non-moyamoya (n=3). Fragmented DNA was hybridized on Human610Quad v1.0 DNA analysis BeadChips (Illumina). Data analysis was performed with GenomeStudio v2009.1, Genotyping 1.1.9, cnvPartition_v2.3.4 software. Overall call rates were more than 99.8%. Results : In total, 1258 CNVs were identified across the whole genome. The average number of CNV was 45.55 per subject (CNV region was 45.4). The gain/loss of CNV was 52/249, having 4.7 fold higher frequencies in loss calls. The total CNV size was 904,657,868, and average size was 993,038. The largest portion of CNVs (613 calls) were 1M-10M in length. Interestingly, significant association between unilateral moyamoya disease (MMD) and progression of unilateral to typical moyamoya was observed. Conclusion : Significant association between unilateral MMD and progression of unilateral to typical moyamoya was observed. The finding was confirmed again with clustering analysis. These data demonstrate that certain CNV associate with moyamoya-type cerebrovascular disease.

Genome-wide Association Study to Identify Quantitative Trait Loci for Meat and Carcass Quality Traits in Berkshire

  • Iqbal, Asif;Kim, You-Sam;Kang, Jun-Mo;Lee, Yun-Mi;Rai, Rajani;Jung, Jong-Hyun;Oh, Dong-Yup;Nam, Ki-Chang;Lee, Hak-Kyo;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1537-1544
    • /
    • 2015
  • Meat and carcass quality attributes are of crucial importance influencing consumer preference and profitability in the pork industry. A set of 400 Berkshire pigs were collected from Dasan breeding farm, Namwon, Chonbuk province, Korea that were born between 2012 and 2013. To perform genome wide association studies (GWAS), eleven meat and carcass quality traits were considered, including carcass weight, backfat thickness, pH value after 24 hours (pH24), Commission Internationale de l'Eclairage lightness in meat color (CIE L), redness in meat color (CIE a), yellowness in meat color (CIE b), filtering, drip loss, heat loss, shear force and marbling score. All of the 400 animals were genotyped with the Porcine 62K SNP BeadChips (Illumina Inc., USA). A SAS general linear model procedure (SAS version 9.2) was used to pre-adjust the animal phenotypes before GWAS with sire and sex effects as fixed effects and slaughter age as a covariate. After fitting the fixed and covariate factors in the model, the residuals of the phenotype regressed on additive effects of each single nucleotide polymorphism (SNP) under a linear regression model (PLINK version 1.07). The significant SNPs after permutation testing at a chromosome-wise level were subjected to stepwise regression analysis to determine the best set of SNP markers. A total of 55 significant (p<0.05) SNPs or quantitative trait loci (QTL) were detected on various chromosomes. The QTLs explained from 5.06% to 8.28% of the total phenotypic variation of the traits. Some QTLs with pleiotropic effect were also identified. A pair of significant QTL for pH24 was also found to affect both CIE L and drip loss percentage. The significant QTL after characterization of the functional candidate genes on the QTL or around the QTL region may be effectively and efficiently used in marker assisted selection to achieve enhanced genetic improvement of the trait considered.