DOI QR코드

DOI QR Code

Genetic Diversity of the Slender Shinner(Pseudopuntungia tenuicorpa) and Its Conservational Implications

가는돌고기(Pseudopuntungia tenuicorpa) 보전을 위한 유전적 다양성 연구

  • Received : 2020.05.11
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

The slender shinner (Pseudopungtungia tenuicorpa), a tiny freshwater fish of about 8 to 10 cm belonging to Cyprinidae, is an endangered species found only in the Han and Imjin Rivers on the Korean Peninsula. During the breeding season, this species spawns in nests of Coreoperca herzi, a predator of this species, or small crevices on rocks. This unique reproductive ecology can make this species more vulnerable to anthropogenic perturbance that can further limit the places to spawn. Here, mtDNA and microsatellite loci were analyzed to identify the genetic diversity and structure of slender shinners and further to provide the basic data necessary for the conservation planning of this species. A total of 28 polymorphic microsatellite markers were developed using Illumina paired-end sequencing, and 67 slender shinners collected from three localities in the Han River were genotyped using these loci. This species showed a remarkably high level of genetic diversity with mean expected heterozygosity of 0.914 and mean allele number per locus of 27.9, and no signature of drastic demographic decline was detected. As a result of our microsatellite analysis, the genetic structure between the two stems of the Han River, North Han and South Han, was prominent. Such a genetic structure was also evident in the sequence analysis of 14 haplotypes obtained from mtDNA control region. Although slender shinners are only found in very limited areas around the world, the genetic structure indicates that there is a block of gene flow among the populations, which should be reviewed in the future if management and restoration of this species is needed.

가는돌고기(Pseudopungtungia tenuicorpa)는 8~10 cm 크기의 소형 잉어과 어류로 전 세계에서 한국의 한강 그리고 임진강에만 서식하는 멸종위기종이다. 가는돌고기는 국내 담수의 상위 포식자 중 하나인 꺽지 수컷이 돌보는 수정된 알이 있는 둥지에 탁란(brood parasitism)을 하거나 작은 바위에 생긴 틈에 산란을 하는 생식 행동을 보인다. 이 종의 특이한 생식 생태는 환경 파괴가 극심한 현대 사회에서 산란 장소를 더욱 제한할 가능성이 높아 특별한 관리와 보전 전략이 필요하다. 본 연구에서는 microsatellites와 mtDNA control region 유전자를 이용하여 가는돌고기의 종 보전 관리 전략에 필요한 개체군 수준의 유전적 다양성 등 기초자료를 확보하고자 하였다. 유전체 분석에서 얻어진 28개의 microsatellite 유전자들을 이용하여 한강의 3지역에서 채집된 67개체들의 유전자형을 밝혔다. 본 microsatellite 유전자 분석 결과, 가는돌고기는 일반적으로 알려진 담수어류의 microsatellite 다양성 정도를 훨씬 뛰어 넘는 높은 유전적 다양성을 보여주었고(평균 이형접합자 빈도 예측치=0.914; 유전자 당 평균 대립 인자 빈도=27.9), 개체군 감소나 inbreeding의 흔적은 나타나지 않았다. 그러나 북한강과 남한강 사이의 유전적 분화가 두드러졌다. 이런 유전적 구조는 14개 haplotype이 발견된 mtDNA 분석 결과에서도 유사하게 나타났다. 매우 좁은 지역에 서식하는 고유 멸종위기종에서 유전자 흐름의 제한 가능성이 나타났기 때문에, 장기적 측면에서 개체군들의 크기에 대한 고민이 필요하다. 추후 적응 유전적 분석 결과에서도 유사한 결과가 나타난다면, 북한강과 남한강 개체군들은 별도 관리가 이루어져야 하며, 복원 계획에도 이러한 유전적 구조에 대한 검토가 수반되어야 할 것이다.

Keywords

References

  1. Abdelkrim, J., B.C. Robertson, J.A.L. Stanton and N.J. Gemmell. 2009. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques, 46: 185e191. https://doi.org/10.2144/000113084.
  2. Clement, M., D. Posada and K.A. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol., 9: 1657-1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x.
  3. DeWoody, J.A. and J.C. Avise. 2000. Microsatellite variation in marine, freshwater and anadro-mous fishes compared with other animals. J. Fish Biol., 56: 461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x.
  4. Earl, D.A. and B.M. vonHoldt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour., 4: 359-36. https://doi.org/10.1007/s12686-011-9548-7.
  5. Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol., 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.
  6. Excoffier, L. and H.E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x.
  7. Funk, W.C., J.K. McKay, P.A. Hohenlohe and F.W. Allendorf. 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol., 27: 489-496. https://doi.org/10.1016/j.tree.2012.05.012.
  8. Glaubitz, J.C. 2004. Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes, 4: 309-310. https://doi.org/10.1111/j.1471-8286.2004.00597.x.
  9. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3. Availabe at: http://www.unil.ch/izea/softwares/fstat.html.
  10. Guo, S.W. and E.A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48: 361e372. https://doi.org/10.2307/2532296
  11. Harrison, I., R. Abell, W. Darwall, M.L. Thieme, D. Tickner and I. Timboe. 2018. The freshwater biodiversity crisis. Science, 362: 1369-1369. https://doi.org/10.1126/science.aav9242.
  12. Hwang, D.S., H.K. Byeon and J.S. Lee. 2014. Complete mitochondrial genome of the freshwater gudgeon, Pseudopungtungia tenuicorpa (Cypriniformes, Gobioninae). Mitochondrial DNA, 25: 3-4. https://doi.org/10.3109/19401736.2013.775261.
  13. Jeon, H.B., J. An, S.M. Kweon, S. Kim, J.N. Yu, B.J. Kim, S. Kawase and H.Y. Suk. 2016. Development of novel microsatellite loci and analyses of genetic diversity in the endangered Tanakia somjinensis. Biochem. Syst. Ecol., 66: 344-350. https://doi.org/10.1016/j.bse.2016.05.006.
  14. Jeon, S.R. and K.C. Choi. 1980. A new cyprinid fish, Pseudopungtungia tenuicorpus from Korea. Korean J. Zool., 23: 41-48.
  15. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199.
  16. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo Hak Publishing, Seoul, Korea, 615pp.
  17. Kim, K.S., S.J. Moon, S.H. Han, K.Y. Kim and I.C. Bang. 2016. Polymorphic microsatellite markers for the endangered fish, the slender shiner Pseudopungtungia tenuicorpa and cross-species amplification across five related species. Genet. Mol. Res., 15: gmr.15038496. https://doi.org/10.4238/gmr.15038496.
  18. Kim, K.Y., M.H. Ko, H. Liu, Q. Tang, X. Chen, J.I. Miyazaki and I.C. Bang. 2013. Phylogenetic relationships of Pseudorasbora, Pseudopungtungia, and Pungtungia (Teleostei; Cypriniformes; Gobioninae) inferred from multiple nuclear gene sequences. BioMed Res. Int., 2013: 347242. https://doi.org/10.1155/2013/347242.
  19. Ko, M.H., S.Y. Park and I.C. Bang. 2012. Egg development early life history of the Slender, Pseudopungtungia tenuicorpa (Pisces: Cyprinidae). Korean J. Ichthyol., 24: 48-55.
  20. Kopelman, N.M., J. Mayzel, M. Jakobsson, N.A. Rosenberg and I. Mayrose. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour., 15: 1179-1191. https://doi.org/10.1111/1755-0998.12387.
  21. Lee, H.H. 2011. Reproductive strategies of genus Pseudopungtungia and Pungtungia. Ph. D. Dissertation, Gunsan National University, Gunsan, Korea, 132pp.
  22. Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187.
  23. Liu, H. and Y. Chen. 2003. Phylogeny of the East Asian cyprinids inferred from sequences of the mitochondrial DNA control region. Canadian J. Zool., 81: 1938-1946. https://doi.org/10.1139/z03-169.
  24. Luikart, G., W.B. Sherwin, B.M. Steele and F.W. Allendorf. 1998. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol., 7: 963e974. https://doi.org/10.1046/j.1365-294x.1998.00414.x
  25. Luo, R., B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, J. Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D.W. Cheung, S.M. Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang, T.W. Lam, J. Wang. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1: 18. https://doi.org/10.1186/s13742-015-0069-2.
  26. Nei, M. 1987. Molecular evolutionary genetics. Columbia university press, New York, 512pp.
  27. NIBR (National Institute of Biological Resources). 2012. Korean red list of threatened species: mammals, birds, reptiles, amphibians, fishes and vascular plants. National Institute of Biological Resources, Incheon, South Korea. 246pp.
  28. Piry, S., G. Luikart and J.M. Cornuet. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered., 90: 502e503. https://doi.org/10.1093/jhered/90.4.502.
  29. Pritchard, J.K., M. Stephens and P. Donnelly 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  30. Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism. J. Hered., 86: 248e249. https://doi.org/10.1093/oxfordjournals.jhered.a111573.
  31. Reid, A.J., A.K. Carlson, I.F. Creed, E.J. Eliason, P.A. Gell, P.T.J. Johnson, K.A. Kidd, T.J. MacCormack, J.D. Olden, S.J. Ormerod, J.P. Smol, W.W. Taylor, K. Tockner, J.C. Vermaire, D. Dudgeon and S.J. Cooke. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev., 94: 849-873. https://doi.org/10.1111/brv.12480.
  32. Smith, A.F.A., R. Hubley and P. Green. 2014. RepeatMasker Version 4.0.5. Available at: http://repeatmasker.org.
  33. Stieneke, D.L. and I.A. Eujayl. 2007. Imperfect SSR Finder Version 1.0. Available at: http://ssr.nwisrl.ars.usda.gov/.
  34. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585-595. https://doi.org/10.1093/genetics/123.3.585
  35. Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197.
  36. Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm and S.G. Rozen. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res., 40: e115. https://doi.org/10.1093/nar/gks596.
  37. Valdez, J.W. and K. Mandrekar. 2019. Assessing the species in the CARES preservation program and the role of aquarium hobbyists in freshwater fish conservation. Fishes, 4: 1-10. https://doi.org/10.3390/fishes4040049.
  38. van Oosterhout, C., W.F. Hutchinson, D.P.M. Wills and P. Shipley. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x.
  39. Waples, R.S. and O. Gaggiotti. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol., 15: 1419-1439. https://doi.org/10.1111/j.1365-294X.2006.02890.x.
  40. Won, H., H.B. Jeon and H.Y. Suk. 2020. Evidence of an ancient connectivity and biogeodispersal of a bitterling species, Rhodeus notatus, across the Korean Peninsula. Sci. Rep., 10: 1-13. https://doi.org/10.1038/s41598-020-57625-3.
  41. Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370. https://doi.org/10.2307/2408641.
  42. Yun, Y.E., J.N. Yu, S.K. Kim, U.W. Hwang and M. Kwak. 2013. Development of microsatellite markers in Pungtungia herzi using next-generation sequencing and cross-species amplification in the genus Pseudopungtungia. Int. J. Mol. Sci., 14: 19923-19931. https://doi.org/10.3390/ijms141019923.