• Title/Summary/Keyword: illite-smectite mixed layer (I-S)

Search Result 6, Processing Time 0.017 seconds

Mineralogy of Illite/smectite Mixed-Layer Clays from the Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트 혼합층 점토광물 연구)

  • Ko, Jaehong;Hesse, R.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.327-335
    • /
    • 1995
  • Illite/smectite (I/S) in the Beaufort-Mackenzie Basin, Arctic Canada has been scrutinized on the basis of mineralogical analysis of 215 core and drill-cutting samples from 22 exploratory wells onshore and offshore. I/S in the Beaufort-Mackenzie Basin includes the following four types: random, a mixture of random and ordered, R1-ordered, and R>1-ordered I/S. A mixture of random and ordered I/S occurs in the transitional interval between random and R>1-ordered I/S, and may represent a metastable state in the ordering reaction. A widespread occurrence of the mixture in natural environments suggests that the ordering reaction may be a slow process that results in co-existence of reactants and products. K-saturation experiments show that layer charges of expandable layers in I/S are variable. High-charge expandable layers transform into illite-like layers upon simple K-saturation. K-saturation alters the composition and/or the degree of ordering in I/S, suggesting that illitization in nature can be transformational.

  • PDF

Mineral Temperatures of the Sedimentary Basins for Petroleum Resources Exploration, Korea (국내 석유자원탐사 퇴적분자의 광물온도)

  • Son, Byeong-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.165-178
    • /
    • 2011
  • The potential of petroleum generation was investigated by clay mineralogical changes of illite-smectite on the sedimentary basins: Tertiary Pohang basin and Cretaceouls Gyeongsang basin on land, and offshore basins east and west of Korea. Only disordered illite-smectite mixed layer minerals occur in the Pohang sediment, where petroleum generation cannot be expected due to low temperatures below $100^{\circ}C$. By contrast, the Gyeongsang basin is characterized by the occurrence of illite and high temperatures above $200^{\circ}C$ which are obtained by illite crystallinity. The high temperatures indicate that the Gyeongsang sediment ha, already passed through the oil generation stage. The change of disordered illite-smectite to R-l ordered illite-smectite is shown in the sediment of the East Sea continental shelf area at a depth of 2,500 m. Therefore, the oil generation can be expected in the sediments below the depth of 2,500 m. The sequential change of disordered illite-smectie to R=3 ordered illite-smectite through R=l ordered illite-smectite occurs in the sediments of West Sea continental shelf area with burial depth which shows the favorable condition for oil and gas generation. The temperatures of sediments measured by illite-smectite indicate that hydrocarbon potential is very low in the onland basins but high in the continental shelf areas.

Relationship between Expandability, MacEwan Crystallite Thickness, and Fundamental Particle Thickness in Illite-Smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 팽창성과 MacEwan 결정자 및 기본입자두께에 관한 연구)

  • 강일모;문희수;김재곤;송윤구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The object of this study was to interpret the ralationship between expandability (% $S_{XRD}$), MacEwan crystallite thickness ( $N_{CSD}$), and mean fundamental particle thickness ( $N_{F}$ ) in illite-semctite mixed layer (I-S), quantitatively. This interpretation was extracted from comparison of two structural models (MacEwan crystallite model and fundamental particle model) of I-S mixed layers. In I-S structure, % $S_{XRD}$, $N_{CSD}$, and $N_{F}$ are not independent parameters but are related to each others by particular geometric relations. % $S_{XRD}$ is dependent on $N_{CSD}$ by short-stack effect, whereas, % $S_{XRD}$ and $N_{F}$ have relation to smectite interlayer number (Ns)=( $N_{F-}$1)/(100%/% $S_{XRD-}$ $N_{F}$ . Therefore, % $S_{XRD}$ and $N_{F}$ should satisfy a specific physical condition, 1< $N_{F}$ <100%/% $S_{XRD}$, because $N_{s}$ is positive. Based on this condition, this study suggested % $S_{XRD}$ vs $N_{F}$ diagram which can be used to interpret % $S_{XRD}$, $N_{F}$ , $N_{S}$ , and ordering, quantitatively. The diagram was examined by XRD data for I-S samples from Ceumseongsan volcanic complex, Korea. I-S samples showed that $N_{F}$ departs from the physical upper-limit ( $N_{F}$ =100%/% $S_{XRD}$) with decrease in % $S_{XRD}$. This phenomenon may happen due to decrease of stacking-capability of fundamental particles with their thickening.g.s with their thickening.g.

About Short-stacking Effect of Illite-smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 단범위적층효과에 대한 고찰)

  • Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Illite-smectite mixed layers (I-S) occurring authigenically in diagenetic and hydrothermal environments reacts toward more illite-rich phases as temperature and potassium ion concentration increase. For that reason, I-S is often used as geothermometry and/or geochronometry at the field of hydrocarbons or ore minerals exploration. Generally, I-S shows X-ray powder diffraction (XRD) patterns of ultra-thin lamellar structures, which consist of restricted numbers of sillicate layers (normally, 5 ~ 15 layers) stacked in parallel to a-b planes. This ultra-thinness is known to decrease I-S expandability (%S) rather than theoretically expected one (short-stacking effect). We attempt here to quantify the short stacking effect of I-S using the difference of two types of expandability: one type is a maximum expandability ($%S_{Max}$) of infinite stacks of fundamental particles (physically inseparable smallest units), and the other type is an expandability of finite particle stacks normally measured using X-ray powder diffraction (XRD) ($%S_{XRD}$). Eleven I-S samples from the Geumseongsan volcanic complex, Uiseong, Gyeongbuk, have been analyzed for measuring $%S_{XRD}$ and average coherent scattering thickness (CST) after size separation under 1 ${\mu}m$. Average fundamental particle thickness ($N_f$) and $%S_{Max}$ have been determined from $%S_{XRD}$ and CST using inter-parameter relationships of I-S layer structures. The discrepancy between $%S_{Max}$ and $%S_{XRD}$ (${\Delta}%S$) suggests that the maximum short-stacking effect happens approximately at 20 $%S_{XRD}$, of which point represents I-S layer structures consisting of ca. average 3-layered fundamental particles ($N_f{\approx}3$). As a result of inferring the $%S_{XRD}$ range of each Reichweite using the $%S_{XRD}$ vs. $N_f$ diagram of Kang et al. (2002), we can confirms that the fundamental particle thickness is a determinant factor for I-S Reichweite, and also that the short-stacking effect shifts the $%S_{XRD}$ range of each Reichweite toward smaller $%S_{XRD}$ values than those that can be theoretically prospected using junction probability.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF