DOI QR코드

DOI QR Code

About Short-stacking Effect of Illite-smectite Mixed Layers

일라이트-스멕타이트 혼합층광물의 단범위적층효과에 대한 고찰

  • Kang, Il-Mo (Korea Institute of Geoscience and Mineral Resources)
  • Received : 2011.12.30
  • Accepted : 2012.04.20
  • Published : 2012.04.28

Abstract

Illite-smectite mixed layers (I-S) occurring authigenically in diagenetic and hydrothermal environments reacts toward more illite-rich phases as temperature and potassium ion concentration increase. For that reason, I-S is often used as geothermometry and/or geochronometry at the field of hydrocarbons or ore minerals exploration. Generally, I-S shows X-ray powder diffraction (XRD) patterns of ultra-thin lamellar structures, which consist of restricted numbers of sillicate layers (normally, 5 ~ 15 layers) stacked in parallel to a-b planes. This ultra-thinness is known to decrease I-S expandability (%S) rather than theoretically expected one (short-stacking effect). We attempt here to quantify the short stacking effect of I-S using the difference of two types of expandability: one type is a maximum expandability ($%S_{Max}$) of infinite stacks of fundamental particles (physically inseparable smallest units), and the other type is an expandability of finite particle stacks normally measured using X-ray powder diffraction (XRD) ($%S_{XRD}$). Eleven I-S samples from the Geumseongsan volcanic complex, Uiseong, Gyeongbuk, have been analyzed for measuring $%S_{XRD}$ and average coherent scattering thickness (CST) after size separation under 1 ${\mu}m$. Average fundamental particle thickness ($N_f$) and $%S_{Max}$ have been determined from $%S_{XRD}$ and CST using inter-parameter relationships of I-S layer structures. The discrepancy between $%S_{Max}$ and $%S_{XRD}$ (${\Delta}%S$) suggests that the maximum short-stacking effect happens approximately at 20 $%S_{XRD}$, of which point represents I-S layer structures consisting of ca. average 3-layered fundamental particles ($N_f{\approx}3$). As a result of inferring the $%S_{XRD}$ range of each Reichweite using the $%S_{XRD}$ vs. $N_f$ diagram of Kang et al. (2002), we can confirms that the fundamental particle thickness is a determinant factor for I-S Reichweite, and also that the short-stacking effect shifts the $%S_{XRD}$ range of each Reichweite toward smaller $%S_{XRD}$ values than those that can be theoretically prospected using junction probability.

일라이트-스멕타이트 혼합층광물(I-S)은 속성작용과 열수변질작용에 의해 생성되는 자생광물로 온도와 칼륨이온 농도가 증가할수록 일라이트가 증가하는 I-S 상으로 전이하기 때문에 에너지 및 광물자원탐사분야에서 지온계와 연대측정계로 널리 활용되고 있다. 일반적으로 I-S 층상구조를 이루고 있는 규산염층의 개수가 한정적이기 때문에 (보통 5 ~ 15개) 팽창도라 부르는 스멕타이트 함량(%S)이 이론치보다 낮게 나타나는 특징이 있다(이를 단범위적층효과라 함). 본 연구에서는 기본입자(I-S 결정자를 물리적으로 분리하였을 때 관찰되는 최소 단위체)가 면대면(face-to-face)으로 쌓여 I-S 층상구조를 이룬다는 기본입자모델을 적용하여 적층정도에 따른 팽창도 차이로부터 단범위적층효과를 정량화하고자 하였다(${\Delta}%S=%S_{Max}-%S_{XRD}$; $%S_{Max}$ = 기본입자가 무한적층을 하였을 때 팽창도, $%S_{XRD}$ = 기본입자가 제한적층을 하였을 때 팽창도로 통상 X-선 회절분석을 이용하여 측정함). 본 연구를 위하여 금성산화산암복합체(경북 의성)에서 산출되는 11개 I-S 시료로부터 1 ${\mu}m$ 이하 입도를 분리하여 $%S_{XRD}$와 평균부합성산란두께(average coherent scattering thickness)를 측정하였으며 이 두 값을 활용하여 평균기본입자두께($N_f$)와 $%S_{Max}$를 유도하였다. 연구결과, 팽창도가 20 $%S_{XRD}$ 지점에서 단범위적층효과가 최대로 발생하는 것을 관찰할 수 있었으며 이는 대략적으로 평균 3개의 규산염층으로 구성된 기본입자($N_f{\approx}3$)가 쌓여 I-S 층상구조를 이루고 있는 경우에 해당하였다. Kang et al.(2002)의 $%S_{XRD}$$N_f$ 다어그램을 이용하여 각 질서도(Reichweite)에 대한 $%S_{XRD}$ 범위를 유추해본 결과, 단범위적층효과로 인하여 $%S_{XRD}$값의 범위가 적층확률(junction probability)을 통하여 유도한 이론치보다 더 낮은 쪽으로 이동하는 현상을 관찰할 수 있었다. 또한, I-S 층상구조를 구성하는 기본입자의 두께가 I-S 질서도를 결정하는 주요 인자임을 재확인할 수 있었다.

Keywords

References

  1. Altaner, S.P. and Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clay. Clay Miner., v.45, p.517-533. https://doi.org/10.1346/CCMN.1997.0450404
  2. Drits, V.A., rodo , J. and Eberl, D.D. (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clay. Clay Miner., v.45, p.461-475. https://doi.org/10.1346/CCMN.1997.0450315
  3. Drits, V.A., Eberl, D.D. and rodo , J. (1998) XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique. Clay. Clay Miner., v.46, p.38-50. https://doi.org/10.1346/CCMN.1998.0460105
  4. Eberl, D.D. and rodo , J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Mineral., v.73, p.1335-1345.
  5. Eberl, D.D., Drits, V., Srodon, J. and Nuesch, R. (1996) MudMaster: a program for calculating crystallite size distributions and strain from the shapes of X-ray diffraction peaks. USGS Open File Report 96-171.
  6. Inoue, A. and Kitagawa, R. (1994) Morphological characteristics of illitic clay minerals from a hydrothermal system. Am. Mineral., v.79, p.700-711.
  7. Jackson, M.L. (1969) Soil chemical analysis - advanced course, second edition. Published by the author, Madison, Wisconsin, 53705, 895p.
  8. Kang, I.M. (2000) Smectite-illitization in Geumseongsan volcanic complex. Master thesis. Yonsei univ., 80p.
  9. Kang, I.M., Moon, H.S., Kim, J.G. and Song, Y.G. (2002) Relationship between expandability, MacEwan crystallite thickness, and fundamental particle thickness in illite-smectite mixed layers. J. Miner. Soc. Korea, v.15, p.95-103.
  10. Kang, I.M., Park, S.C., Moon, H.S. and Yoo, J.H (2003) Study on expandability and X-ray coherent scattering domain size of bentonite from Gampo and Yonil area, Korea. Econ. Environ. Geol., v.36, p.1-8.
  11. Lee, H.K., Kim, S.J., Yun, H.S., Choi, W.C., Song Y.S. and Tetsumaru Itaya (1993) K-Ar age of the Keumseongsan volcanic rocks and mineralization in the southeastern part of Euiseong, Gyeongsangbuk-Do, Republic of Korea. Jour. Korean Inst. Mining Geol., v.26, p.445-454.
  12. Meunier, A. and Velde, B. (2010) Illite. Springer-Verlag, Berlin, 286p.
  13. Moore, D.M. and Reynolds, R.C. (1997) X-ray Diffraction and the identification and analysis of clay minerals, 2nd edition. Oxford University Press, Oxford and New York, 378p.
  14. Nadeau, P.H., Wilson, M.J., McHardy W.J. and Tait J.M. (1984) Interparticle diffraction: a new concept for interstratified clays. Clay Miner., v.19, p.757-759. https://doi.org/10.1180/claymin.1984.019.5.06
  15. Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbonbearing rocks of Miocene to Mississippian age. Clay. Clay Miner., v.41, p.119-133. https://doi.org/10.1346/CCMN.1993.0410202
  16. Reynolds, R.C. (1980) Interstratified clay minerals. In Crystal structures of clay minerals and their X-ray identification, G.W., Brindley and G. Brown editors, Mineralogical Society, London.
  17. Reynolds, R.C. Jr. and Reynolds, R.C. III (1996) $NEWMOD^{(C)}$ for Windows: A computer program for the calculation of one-dimensional X-ray diffraction patterns of mixed-layered clay minerals. 8 Brook Road, Hanover, New Hampshire, USA.
  18. Srodon, J. (1984) X-ray powder diffraction identification of illitic materials. Clay. Clay Miner., v.32, p.337-349. https://doi.org/10.1346/CCMN.1984.0320501
  19. Srodon, J., Andreoli, C., Elsass, F. and Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock. Clay. Clay Miner., v.38, p.373-379. https://doi.org/10.1346/CCMN.1990.0380406
  20. Srodon, J., Elsass, F., McHardy, W.J. and Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner., v.27, p.137-158. https://doi.org/10.1180/claymin.1992.027.2.01
  21. Srodon, J. and Elsass, F. (1994) Effect of the shape of fundamental particles on XRD characteristics of illitic minerals. Eur. J. Mineral., v.6, p.113-122. https://doi.org/10.1127/ejm/6/1/0113
  22. Srodon, J., Eberl, D.D. and Drits, V.A. (2000) Evolution of fundamental-particle size during illitization of smectite and implications of reaction mechanism. Clay. Clay Miner., v.48, p.446-458. https://doi.org/10.1346/CCMN.2000.0480405
  23. Ylagan, R.F., Altaner, S.P. and Pozzuoli, A. (2000) Reaction mechanisms of smectite illitization associated with hydrothermal alternation from Ponza island, Italy. Clay. Clay Miner., v.48, p.610-631. https://doi.org/10.1346/CCMN.2000.0480603

Cited by

  1. Generation of the Staurolite Based on a Relation Between Illite-Muscovite Transition: A Study on the Shale of the Baekunsa Formation, Buyeo vol.26, pp.1, 2013, https://doi.org/10.9727/jmsk.2013.26.1.55