• Title/Summary/Keyword: ill-defined domain

Search Result 11, Processing Time 0.027 seconds

The Worked Example Effect using Ill-defined Problems in On-line Learning : Focus on the Components of a Worked Example (온라인 학습에서 비구조화된 문제에 대한 해결된 예제 효과)

  • Kyun, Suna;Lee, Jae-Kyung;Lee, Hyunjeong
    • Journal of Information Technology Services
    • /
    • v.14 no.1
    • /
    • pp.129-143
    • /
    • 2015
  • This study has two goals. The first goal is to investigate whether worked examples are effective in the ill-defined domain with on-line learning and the second goal is to find out which components (conceptual or procedural knowledge) of worked examples are effective factor at the given learning environment. We carried out three experiments in which Korean undergraduate or graduate students were working in three or four conditions of worked examples (CWE, PWE, CPWE, or the control group). While experiment 1 conducted in on-line learning environment did not find any effect and difference among groups and also any logical reason for those results, experiment 2 conducted in completely controlled laboratory setting with less knowledgeable students showed the clear difference among groups by the order CPWE, PWE, and CWE. Experiment 3 in which highly knowledgeable and motivated students were presented the same materials in more controlled on-line learning environment indicated the difference among groups by the order CWE, CPWE, and PWE. The results were discussed within the framework of cognitive load theory.

Hints-based Approach for UML Class Diagrams

  • Sehrish Abrejo;Amber Baig;Adnan Asghar Ali;Mutee U Rahman;Aqsa Khoso
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.9-15
    • /
    • 2023
  • A common language for modeling software requirements and design in recent years is Unified Modeling Language (UML). Essential principles and rules are provided by UML to help visualize and comprehend complex software systems. It has therefore been incorporated into the curriculum for software engineering courses at several institutions all around the world. However, it is commonly recognized that UML is challenging for beginners to understand, mostly owing to its complexity and ill-defined nature. It is unavoidable that we need to comprehend their preferences and issues considerably better than we do presently to approach the problem of teaching UML to beginner students in an acceptable manner. This paper offers a hint-based approach that can be implemented along with an ordinary lab task. Some keywords are highlighted to indicate class diagram components and make students understand the textual descriptions. The experimental results indicate significant improvement in students' learning skills. Furthermore, the majority of students also positively responded to the survey conducted in the end experimental study.

Hints based Approach for UML Class Diagrams

  • Sehrish Abrejo;Amber Baig;Adnan Asghar Ali;Mutee U Rahman;Aqsa Khoso
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.180-186
    • /
    • 2024
  • A common language for modelling software requirements and design in recent years is Unified Modeling Language (UML). Essential principles and rules are provided by UML to help visualize and comprehend complex software systems. It has therefore been incorporated into the curriculum for software engineering courses at several institutions all around the world. However, it is commonly recognized that UML is challenging for beginners to understand, mostly owing to its complexity and ill-defined nature. It is unavoidable that we need to comprehend their preferences and issues considerably better than we do presently in order to approach the problem of teaching UML to beginner students in an acceptable manner. This paper offers a hint based approach that can be implemented along with an ordinary lab task. Some keywords are heighted to indicate class diagram component and make students to understand the textual descriptions. The experimental results indicate significant improvement in students learning skills. Furthermore, majority of students also positively responded to the survey conducted in the end experimental study.

System Identification in Time Domain for Structural Damage Assessment (구조물 손상 탐지를 위한 시간 영역에서의 SI기법)

  • 이해성;박승근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.614-618
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathmatical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L$_1$-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time.

  • PDF

Integrating Case-Based Reasoning with DSS (DSS와 사례기반 추론의 결합)

  • Kim Jin-Baek
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.169-193
    • /
    • 1998
  • Case- based reasoning(CBR) offers a new approach for developing knowledge based systems. Unlike the rule-based paradigm, in which domain knowledge is encoded in the form of production rules, in the case-based approach the problem solving experience of the domain expert is encoded in the form of cases stored in a casebase(CB). CBR allows a reasoner (1) to propose solutions in domains that are not completely understood by the reasoner, (2) to evaluate solutions when no algorithmic method is available for evaluation, and (3) to interprete open-ended and ill-defined concepts. CBR also helps reasoner (4) take actions to avoid repeating past mistakes, and (5) focus its reasoning on important parts of a problem. Owing to the above advantages, CBR has successfully been applied to many kinds of problems such as design, planning, diagnosis and instruction. In this paper, I propose case-based DSS(CBDSS). CBDSS is an intelligent DSS using CBR technique. CBDSS consists of interface, case-based reasoner, maintainer, casebase management system, domain dependent CB, domain independent CB, and so on.

  • PDF

An SI Scheme for the Assessment of Structural Damage and Damping (구조물 손상탐지 및 감쇄평가를 위한 시간 영역에서의 SI 기법)

  • 이해성;강주성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.430-433
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping in SI. The regularization technique is applied to alleviate the ill-posed characteristics of inverse problems. The validity of the proposed method is demonstrated by an experimental study on a shear building model.

  • PDF

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake (지진하중에 의해 발생된 가속도를 이용한 시간창 기법에 의한 구조물의 손상탐지)

  • Park, Seung-Keun;Lee, Hae-Sung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.529-535
    • /
    • 2005
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least squared errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L1-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time. Numerical simulation study is performed through a two-span continuous truss subject to ground motion.

  • PDF

Economic Machining Process Models Using Simulation, Fuzzy Non-Linear Programming and Neural-Networks (시뮬레이션과 퍼지비선형계획 및 신경망 기법을 이용한 경제적 절삭공정 모델)

  • Lee, Young-Hae;Yang, Byung-Hee;Chun, Sung-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.39-54
    • /
    • 1997
  • This paper presents four process models for machining processes : 1) an economical mathematical model of machining process, 2) a prediction model for surface roughness, 3) a decision model for fuzzy cutting conditions, and 4) a judgment model of machinability with automatic selection of cutting conditions. Each model was developed the economic machining, and these models were applied to theories widely studied in industrial engineering which are nonlinear programming, computer simulation, fuzzy theory, and neural networks. The results of this paper emphasize the human oriented domain of a nonlinear programming problem. From a viewpoint of the decision maker, fuzzy nonlinear programming modeling seems to be apparently more flexible, more acceptable, and more reliable for uncertain, ill-defined, and vague problem situations.

  • PDF

PRECONDITIONERS FOR THE PRESSURE-CORRECTION METHOD APPLIED TO THE UNSTEADY STOKES PROBLEM

  • Ghahreman, N.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.307-321
    • /
    • 2004
  • In this paper, the unsteady Stokes problem is considered and also the pressure-correction method for the problem is described. At a fixed time level, we reduce the problem to two symmetric positive definite problems which depend on a time step parameter. Linear systems that arise from the problems are large, sparse, symmetric, positive definite and ill-conditioned as the time step tends to zero. Preconditioned problems based on an additive Schwarz method for solving the symmetric positive definite problems are derived and preconditioners are defined implicitly. It will be shown that the rate of convergence is independent of the mesh parameters as well as the time step size.

A Study on Architecting Method of a Welding Robot Using Model-Based System Design Method (모델기반 시스템 설계 방법을 이용한 용접로봇의 상부아키텍쳐 정의에 관한 연구)

  • Park Young-Won;Kim Jin-Ill
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • This paper describes the application of a model-based system design method critical to complex intelligent systems, PSARE, to a welding robot development to define its top level architecture. The PSARE model consists of requirement model which describes the core processes(function) of the system, enhanced requirement model which adds technology specific processes to requirement model and allocates them to architecture model, and architecture model which describes the structure and interfaces and flows of the modules of the system. This paper focuses on the detailed procedure and method rather than the detailed domain model of the welding robot. In this study, only the top level architecture of a welding robot was defined using the PSARE method. However, the method can be repeatedly applied to the lower level architecture of the robot until the process which the robot should perform can be clearly defined. The enhanced data flow diagram in this model separates technology independent processes and technology specific processes. This approach will provide a useful base not only for improvement of a class of welding robots but also for development of increasingly complex intelligent real-time systems.