• Title/Summary/Keyword: ignition characteristics test

Search Result 201, Processing Time 0.022 seconds

Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum (밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF

The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad (물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성)

  • Lee, Kwang-Jin;Chung, Yong-Gahp;Cho, Nam-Kyung;Nam, Jung-Won;Jung, Il-Hyung;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.756-762
    • /
    • 2011
  • A gas deflector cooling system plays an important role in the suppression of shock wave generated during the ignition of a launch vehicle engine. Also, this system decrease a large vibration of damaging the payload and structure of the launch vehicle. The gas deflector cooling system in the launch pad of NARO space center was constructed to directly inject water into the plume of the launch vehicle engine. The flight test result of NARO space launch vehicle showed that this method had a good performance on the viewpoint of cooling the gas deflector.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil) (디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로))

  • Lim, Jae-Keun;Choi, Soon-Youl;Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.

A Study on Combustion Characteristics of Pulverized Fuel Made from Food Waste (음식물쓰레기로 부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Kim, Sang-Guk
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000 Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio (fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combustor temperature reaches about $1000^{\circ}C$ and CO is 77-103 ppm at 1.55 excess air ratio and SOx and Cl are under 2 ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy at the age of high oil price.

  • PDF

A Study on Combustion Characteristics of Purverized Fuel Made from Food Waste (음식물쓰레기로부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Yun, Jong-Deuk;Lee, Ho-Nam;Lee, Seung-Hoon;Kim, Sang-Guk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.149-152
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio(fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combueter temperature reaches about $1000^{\circ}C$ and CO is 77-103ppm at 1.55 excess air ratio and SOx and Cl are under 2ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy for high oil price era

  • PDF

Installation of Current Source Using LC Resonance Circuit for Arcing Experiments (아크계측 및 응용연구를 위한 LC공진회로 전류원 구축)

  • Kang, J.S.;Park, H.T.;Choe, W.J.;Lee, B.W.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2113-2115
    • /
    • 2000
  • It is necessary to install the arc generation facility in order to obtain the important technology for the design of breakers and switches, and for the improvement of their performance and reliability. With this facility, it is possible, to study the characteristics of Arc in air/gas/vacuum insulation environment. The facility briefly consists of capacitor bank which can charge enormous energy, an air-core reactor, experimental arc-chamber, and several measurement equipments. This facility can simulates the arc phenomena in breakers and switches by means of generating high currents. In order to study the arc phenomena in SF6 gas and vacuum and to test the quenching performance of the extinguishing chambers which are developing. we made experimental $SF_6$gas/vacuum chambers and measured several parameter's of chambers. And besides we visualized arc ignition and arc movement by means of high speed camera.

  • PDF

Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine (4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.

Evaluation of Domestic CCPs(Coal Combustion Products) Quality by API Test Method (API시험법에 의한 국내 석탄회의 품질 평가)

  • Yoo, Sung-Won;Yu, Kyung-Geun;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of industrial by-products and CO2 reduction have been important issues in the world. In this reason, applications and reuse of Fly ash as a binder for concrete, which is generated in thermoelectric power plant, have been one of the effective recycle methods. In order for Fly ash to be applied to concrete, Korean Standard(KS) has selected and managed quality such as $SiO_2$, fineness, specific gravity, ignition loss and activity index. However, there is a limits for activity index, whose test period required is at least 28 days or 91 days. Activity index is the critical indication standard to determine mechanical strength of concrete that contained Fly ash. To complement the disadvantage of test method, this research provided "API test method", which quickly measure Pozzolanic reaction of Fly ash can be considered as a alternative of activity index. Then, the adaptable API test method need to be investigated through comparative analysis with the test result of API, activity index and K-value. The test method can make evaluation of Fly ash quality faster and more accurate. As a result, most Fly ash produced in Korea has not been satisfied in the KS quality standard except water content and specific gravity, and especially fluidized bed boiler ash has its characteristics. Also, API, activity index and K-value have superior interrelationship. The interrelationship between API and activity index and K-value gets increased as the material age gets higher, so API test can be considered as very useful test method for Pozzolanic reaction evaluation of Fly ash.

An Experimental Study of Sprinkler system for Sandwich Panel Wall Protection (샌드위치패널 벽면보호용 스프링클러설비 적용 실험)

  • Seo, Dong-Hun;Kim, Won-Hyung;Kim, Jong-Hoon;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.37-43
    • /
    • 2017
  • Domestic sandwich panel buildings are widely used on walls and roofs of factories and warehouse facilities. Factory and warehouse facilities have high fire load and rapid spread of fire due to their use characteristics, leading to large fires. Due to the characteristics of materials, walls and roofs are collapsed, resulting in life damage and property damage. In this regard, this study examined domestic and international standards of sprinkler facilities to prevent ignition of sandwich panel walls. Also, in order to check whether the fire was prevented by installing the head on the wall of the sandwich panel, the fire test was carried out with 10 cm, 60 cm, and 120 cm from the wall along the sprinkler head installation standard of domestic fire safety standards. As a result of the fire test, it was confirmed that the sandwich panel was prevented from igniting when the head of water pressure 0.1 MPa and water quantity K-80 was installed. According to the separation distance, it was impossible to measure the temperature at 10 cm, but at 60 cm, At the maximum temperature of $525^{\circ}C$ and 120 cm, the maximum temperature of the wall of the sandwich panel was measured as $276^{\circ}C$. As a result of the fire test, considering the fire point of 450 degrees Celsius in the fire test of the sandwich panel, the distance from the sandwich panel wall to the combustible is more than 120 cm.