• Title/Summary/Keyword: igneous rock texture

Search Result 21, Processing Time 0.022 seconds

Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Korea (거도광산(巨道鑛山) Fe-Cu 및 Au-Bi-Cu 광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Ko, Jai Dong;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.189-204
    • /
    • 1982
  • The Geodo mine is located in the southern limb of the Hambaeg syncline. Geology of the area consists of Paleozoic-Mesozoic sedimentary Rocks and Cretaceous igneous rocks. The important igneous rocks presumably related to skarnization and ore mineralization in the area, are the early granodiorite and the late porphyritic granodiorite. Two mineralogical types of ore deposits are recognized in the area. They are the Fe-Cu deposits in the Myobong formation and the Au-Bi-Cu deposits in the Hwajeol formation. Contact metamorphism due to granodiorite intrusion includes hornfelsization, exoskarnization and endoskarnization. Wall-rock alterations related to the Fe mineralization are grouped into the hydrothermal replacement skarnization and the hydrothermal filling skarnization. Another hydrothermal alteration is associated with the Cu mineralization. Various mineralogical analyses have been applied for the identification of minerals. They include optical microscopy, chemical analysis, etching test, X-ray diffraction, and infrared absorption spectroscopic analyses. The ore minerals in these ore deposits are classified into two groups;hypogene and supergene minerals. Hypogene minerals consist of magnetite, pyrite, chalcopyrite, and chalcocite. Supergene minerals consist of chalcocite, bornite, and geothite. Ore minerals show various kinds of ore texture: open-space filling, exsolution, replacement, and cementation texture. The gangue minerals consist of quartz, diopside, epidote, garnet and plagioclase in the hornfelsic zone, garnet, diopside, scapolite, actinolite, sericite, chlorite, quartz, and calcite in the skarn zone, and, epidote, chlorite, sericite, quartz, and calcite in the late hydrothermal alteration zone. This study shows that the Fe-Cu deposits are of metasomatic pipe type with the later hydrothermal fillings, and the Au-Bi-Cu deposits are of hydrothermal fissure-filling type. The mineralization is probably related to the intrusion of porphyritic granite.

  • PDF

Petrology and petrochemistry of the so called "Ganghwa syenitic rock" in southeastern part of Ganghwa Island (강화도(江華島) 동남부(東南部)에 분포(分布)하는 소위(所謂) 강화섬장암질암(江華閃長岩質岩)에 대(對)하여)

  • Kim, Yong-Jun;OH, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 1978
  • The study focused on the petrology and petrochemistry of the so called "Ganghwa syenitic rocks" which intruded into metasediment of basement in southeastern part of Ganghwa Island. The geologic sequence of the mapped area was shown in table 1, 10 model analyses and 7 chemical analyses on the rock samples taken from the Ganghwa syenitic rocks and Manisan granite have been used to discuss the nomenclature of the rocks and petrological relationship between rock types. The petrograpical and petrochemical features based on, the analyses are as follows: 1) Ganghwa syenitic rocks consist of Ganghwa alkali syenite and Ganghwa diorite porphyry which based on the classification of the subcommision on systematics of igneous of IGUS. Ganghwa diorite porphyry which occured as dike forms are intruded into Ganghwa alkali syenite. The rock forming minerals of Ganghwa alkali syenite are composed of perthite, plagioclase, quartz, hornblend and chlorite in major, and zircon, apatite, sericite and magnetite in minor. Ganghwa diorite porphyries consist of plagioclase, biotite, hornblend, orthoclase and chlorite, with, porphyritic texture. 2) In silica-oxides variation (Fig. 2) and AMF diagram (Fig_ 3), the Ganghwa alkali syenite is similar to the trend of Daly's average basalt-andesite-dacite-rhyolite than Skaergaard which shows the trend of the fractional crystallization of magma, and equivalent to the alkali rock series by Peacock. 3) The general trend of data points shift to plagioclase, and are superimposed on the alkali rich terminal part of the granodiorite province of SW Finland in normative Q-Kf-Pl(Fig. 4) and Or-Ab-An diagram respectively. The above-mentioned evidences suggested that the Ganghwa syenitic rocks are the differential products resulted by assimilation of intermediated magma and metasedment rock under relatively rapid cooling condition.

  • PDF

Petrology of enclaves in the granite around Bangeujin, Ulsan

  • Lee, Joon-Dong;Kim, Jong-Sun;Choi, Bo-Sim
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.24-24
    • /
    • 2000
  • We studied about petrological characteristics of the Bangeujin granite belongs to porphyritic biotite granite, petrogenesis of the enclaves in the granite and contact metamorphism of the sedimentary rock around the granite. The enclaves in the granite are concentrated in the eastern part of the Mipo fault but in the western part, these are rare. The enclaves can be divided into three types according to the petrographical characteristics. These three types are: (1) enclaves having few phenocrysts and fine grained igneous texture and ellipsoid is predominant; (2) enclaves similar In petrographical characteristics and having many phenocrysts considered as being originated from the granitic host rock; and (3) enclaves corresponding to granite in mode composition, having large phenocrysts and of which the matrix is corresponding to fine granular. First two types are correspond to mafic micro granular enclaves and the third is corresponds to felsic microgranular enclaves. In addition, the felsic microgranular enclaves capture the mafic microgranular enclaves. The fact that the compositions of biotite and plagioclase in the enclaves are nearly identical with those of biotite and plagioclase in the granitic host rock is considered as the results of supporting magma mingling. The major elements show well the linear variations as the SiOz$.$ content increases. The rare earth elements content decrease with increasing SiOz content, interpreted as the results of magma mingling. Therefore, we can conclude that the Bangeujin granite captured the felsic microgranular enclaves formed by collapse of early chilled margin during the crystallization and there was magma mingling by the injection of the mafic magma after that time. In addition, these aspects are predominant in the eastern part of the Mipo fault is considered as related to the fault movement.vement.

  • PDF

Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit (해남 연-아연 스카른광상의 산상과 지화학적 특성)

  • Im, Heonkyung;Shin, Dongbok;Heo, Seonhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.363-379
    • /
    • 2014
  • The Haenam Pb-Zn skarn deposit is located at the Hwawon peninsula in the southwestern part of the Ogcheon Metamorphic Belt. The deposit is developed along the contact between limestone of the Ogcheon group and Cretaceous quartz porphyry. Petrography of ore samples, chemical composition of skarn and ore minerals, and geochemistry of the related igneous rocks were investigated to understand the characteristics of the skarn mineralization. Skarn zonation consists of garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone, pyroxene+garnet+quartz${\pm}$calcite zone, calcite+pyroxene${\pm}$garnet zone, quartz+calcite${\pm}$pyroxene zone, and calcite${\pm}$chlorite zone in succession toward carbonate rock. Garnet commonly shows zonal texture comprised of andradite and grossular. Pyroxene varies from Mn-hedenbergite to diopside as away from the intrusive rock. Chalcopyrite occurs as major ore mineral near the intrusive rock, and sphalerite and galena tend to increase as going away. Electron probe microanalyses revealed that FeS contents of sphalerite become decreased from 5.17 mole % for garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone to 2.93 mole %, and to 0.40 mole % for calcite+pyroxene${\pm}$garnet zone, gradually. Ag and Bi contents also decreased from 0.72 wt.% and 1.62 wt.% to <0.01 wt.% and 0.11 wt.%, respectively. Thus, the Haenam deposit shows systematic variation of species and chemical compositions of ore minerals with skarn zoned texture. The related intrusive rock, quartz porphyry, expresses more differentiated characteristics than Zn-skarn deposit of Meinert(1995), and has relatively high$SiO_2$ concentration of 72.76~75.38 wt.% and shows geochemical features classified as calc-alkaline, peraluminous igneous rock and volcanic arc tectonic setting.

Evaluation and Prediction of Failure Hazard Area by the Characteristics of Forest Watershed (산림유역 특성에 의한 붕괴 위험지역의 평가 및 예지)

  • Jeong, Won-Ok;Ma, Ho-Seop
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2006
  • This study was carried out to analyze the characteristics of forest watershed factors by using the quantification theory(I) for evaluation and prediction of the failure hazard area. Present $sediment(m^3/yr/ha)$ of erosion control dams were investigated in 95 sites of erosion control dam constructed during 1986 to 1999 in Gyeongnam province. The results obtained from this study were summarized as follows; General condition of class I(Very hazard area) were as follow; Igneous rock in parent rock, coniferous in forest type, below 20year in stand age, below 30cm in soil depth, SCL in soil texture, $31{\sim}40%$ in gravel contents, $S{\sim}E$ in aspect, $2,501{\sim}3,600m$ in length of main stream, $26{\sim}30$ in number of total streams, $6,601{\sim}10,000m$ in length of total streams, over 3 in stream order, over 16 in number of first streams order and over $31^{\circ}$ of slope gradient. General condition of class IIl(hazard area) were as follow; Metamorphic rock in parent rock, hardwood in forest type, over $21{\sim}24year$ in stand age, $31{\sim}40cm$ in soil depth, SiCL or SCL in soil texture, $11{\sim}20%$ in gravel contents, $S{\sim}W$ in aspect, $1,501{\sim}2,600m$ in length of main stream, $6{\sim}10$ in number of total streams, $3,501{\sim}5,500m$ in length of total streams, 2 in stream order, $6{\sim}10$ in number of first streams order and over $31^{\circ}$ of slope gradient. General condition of class III(Un hazard area) were as follow; Sedimentary rock in parent rock, mixed in forest type, over 25year in stand age, $41{\sim}50cm$ in soil depth, SiCL in soil texture, below 10% in gravel contents, $N{\sim}W$ in aspect, below 500m in length of main stream, below 5 in number of total streams, below 1,000m in length of total treams, below 1 in stream order, below 2 in number of first streams order and below $25^{\circ}$ of slope gradient. The prediction method of suitable for failure hazard area divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very hazard area was over 4.8052. A score of class II was 4.8051 to 2.5602, it was evaluated as a hazard area, and class III was below 2.5601, it was evaluated as a un hazard area.

Mineralization and Genetic Environments of the Central and Main Orebodies in the Manjang Deposit, Goesan (만장광상 중앙광체와 본광체의 광화작용과 생성환경)

  • Yu, Hyunmin;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-101
    • /
    • 2018
  • The Manjang deposit developed in the Hwajeonri formation of the Okcheon metamorphic belt consists of the Central and Main orebodies of Cu-bearing hydrothermal vein type and the Western orebody of Fe-skarn type. This study focuses on the Cu mineralization of the Central and Main orebodies to compare with the genetic environments of the Western orebody previously studied. The Central orebody produced pyrrhotite and chalcopyrite as major ore minerals with vein texture, while the Main orebody contains pyrite, arsenopyrite, and chalcopyrite as major ore minerals with vein, massive, and brecciated texture. Sphalerite, galena, magnetite, ilmenite, rutile, cassiterite, wolframite, and stannite are also accompanied. Local occurrence of skarn is dominated by grossular and hedenbergite, reflecting the reduced condition of the skarnization. Geothermometries of sphalerite-stannite in the Central orebody and arsenopyrite-pyrite in the Main orebody indicate the formation temperature of $204-263^{\circ}C$ and $383-415^{\circ}C$, respectively. Sulfur fugacity of $10^{-6}-10^{-7}atm$. in the Main orebody decreased toward the Central orebody. Sulfur isotope compositions of sulfide minerals from the Central and Main orebodies are 4.6-7.9‰ and 4.3-7.0‰, respectively, reflecting magmatic origin with slight influence by host rock. Considering ore mineralogy, texture as well as physicochemical conditions, the Main and Central orebodies of hydrothermal Cu mineralization reflect the characteristics of proximal and distal type ore mineralization, respectively, related to hidden igneous rocks, and they were generated under different hydrothermal systems from the Fe-skarn Western orebody.

Petrlolgy of the Cretaceous Volcanic Rocks in Cheonsungsan Area, Korea. (천성산 백악기 화산암류의 암석학적 연구(1))

  • 김진섭;선종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.108-120
    • /
    • 1996
  • This study reports petrography and geochemical characteristics of the Cretaceous volcanic rocks that are distributed in the vicinity of the Cheonsungsan area, Yangsan-Gun, Gyeongsangnam-Do. The Cretaceous volcanic rocks composed of andesitic rocks, Wonhyosan tuff, Cheonsungsan tuff in ascending order. Sedimentary rock is the basement in the study area cofered with volcanic rocks. These volcanic rocks are Wonhyosan tuff and Cheonsungsan tuff that represented the early phase of the Bulgugsa igneous activity. Wonhyosan tuff are classified into dacite tuff and dacite welded tuff based on the rock texture and their mineral composition. They are covered with Cheonsungsan tuff. Dacite tuff composed of lithic lapilli ash-flow tuff and vitric ash-flow tuff. Most dacite welded tuff are lapilli ash-flow tuff. Cheonsungsan tuff overlying the Wonhyosan tuff consists of rhyolite tuff and rhyolite welded tuff. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic and sedimentary rocks. Rhyolite welded tuff is distinguishe from rhyolite tuff by is typical eelded fabrics and its rock color. According to petrochemical data, the volcanic rocks in study area belong to high-K orogenic suties. On the discriminant diagrams such as La/Yb versus Th/Yb, these rocks falls into the discriminant fields for the normal continental margin arc.

  • PDF

Characteristics of Surface Deterioration and Materials for Stone Guardian and Stone Memorial Tablets from Muryeong Royal Tomb of Baekje Kingdom in Ancient Korea (백제 무령왕릉 석수와 지석의 재질 및 표면손상 특성)

  • Park, Jun Hyoung;Lee, Chan Hee;Choi, Gi Eun
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.241-254
    • /
    • 2017
  • The Stone Guardian and Memorial Tablets from the Muryeong Royal Tomb are composed of the same kind of plutonic igneous rocks, the so-called hornblendite. Color of the rocks show greenish gray, and both of them occurred with medium-grained granular texture. The rock-forming minerals composed mainly of amphibole and plagioclase. Magnetic susceptibility of the Stone Guardian is 0.15 to 0.63 (mean $0.42{\times}10^{-3}SI\;unit$), the King's Stone Memorial Tablet is 0.11 to 0.38 (mean $0.24{\times}10^{-3}SI\;unit$) and the Queen's Stone Memorial Tablet ranges from 0.10 to 0.33 (mean $0.18{\times}10^{-3}SI\;unit$). The rocks of the artifacts are hard to find in the Gongju area. Large scaled out crop of hornblendite is not distributed, but found in many places that the form of dike. The lithology and occurrences indicate that the artifacts are made of plutonic rock rather than dike. Reddish brown and pale brown contaminants, are also distributed on the surface of the Stone Guardian and Memorial Tablets. The reddish brown color is due to Fe oxide, and the pale brown color occurs due to the elution of Ca. The reddish brown contaminants are influenced by the internal components of the rock and oxidation of burial iron accessories. In contrast, the pale brown contaminants are considered to have flown from the carbonate materials used in the Royal Tomb, with a little added Fe oxide. Physical and chemical deterioration operate intricately in the Stone Guardian and Memorial Tablets. Physical deterioration is extremely rare and chemical deterioration is stable except for a part of the Stone Guardian and the front of the Queen Stone Memorial Tablet.

Geochemical Study on Foliated Granites in the Damyang-Jinan area (담양(潭陽)-진안(鎭安)사이에 분포(分布)하는 엽리상화강암류(葉理狀花崗岩類)에 대(對)한 암석화학적(岩石化學的) 연구(硏究))

  • Kim, Cheong-Bin;Kim, Yong-Jun;Hong, Sei-Sun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.87-104
    • /
    • 1990
  • Foliated granites between Damyang and Jinan are subdivided into Daegang foliated granite, Foliated hornblende biotite granodiorite, Sunchang foliated granodiorite, Foliated two mica granite and Samori foliated granite by mineral and texture. From EPMA data of the foliated granites following results are achieved. Composition of plagioclase are correspond to andesine, oligoclase and albite in Foliated hornblende biotite granodiorite, Sunchang foliated granodiorite and other foliated granites, respectively. And amphiboles are calcic hornblende in Foliated hornblende biotite granodiorite, and riebeckite in Daegang foliated granite. In differentiation index(D. I.) and Larsen index(L. I.), Daegang foliated granite, Foliated two mica granite and Samori foliated granite which belong to granite are 83.12-95.54 and 25.86-29.05 and Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite of diorite to granodiorite are 54.99-78.54(D. I.) and 6.48-21.01(L. I.). Harker and AMF diagrams plotted from foliated granites show that the granites are product of calc alkali rock series orignated from co-magma. Characteristic foliation of foliated granites fromed by ductile deformation at deep zone of dextral strike slip fault. Foliated granites are considered as a series of differentiated product of Triassic Igneous activity of Songrim disturbance. According to REE, (La/Lu) and Eu/Sm, Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite are correspond to granodiorite, and other foliated granites are monzo-and syeno-granite. Foliated granites having 0.20-0.01 of Em/Sm ratio are plutons emplaced by the tectonic setting in continents and continental margin.

  • PDF

Derivation of Suitable-Site Environmental Factors in Robinia pseudoacacia Stands Using Type I Quantification Theory (수량화이론 I방법에 의한 아까시나무 임분의 적지 환경인자 도출)

  • Kim, Sora;Song, Jungeun;Park, Chunhee;Min, Suhui;Hong, Sunghee;Lim, Jongsoo;Son, Yeongmo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.428-434
    • /
    • 2022
  • This study was conducted to derive the site index of forest productivity of Robinia pseudoacacia (honey plant) to characterize suitable planting sites and to investigate the effect of the site environmental factors on the site index using the quantification theory I method. The data used in the analysis were growth factors (stand age, dominant height, etc.) of the 6th national forest resources survey and various site environmental factors of a forest soil map (1:5,000). The average site index value of the R. pseudoacacia stand in Korea was 14 (range, 8 to 18). The environmental factors affecting the site index were parent rock, climatic zone, soil texture, local topography, and altitude. The accuracy of the estimation model using quantification theory I was only 33%. However, the correlation between the site index and the site environmental factors was statistically significant at the 1% level. Results of quantification analysis between site index and site environmental factors revealed that metamorphic and igneous rocks received high grades as parent rocks, climate zones received higher grades than central temperate zone, clay loam and silt loam received high grades in soil texture, and hillside received a high grade in local topography. Analysis of the partial correlation between site topographical factors and forest productivity (site index) found that soil class and altitude were partially correlated to x by 0.4129 and 0.4023, respectively, indicating that these factors are the most influential variables.