• Title/Summary/Keyword: identity-summand graph

Search Result 3, Processing Time 0.015 seconds

THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE SEMIRINGS

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.189-202
    • /
    • 2014
  • An element r of a commutative semiring R with identity is said to be identity-summand if there exists $1{\neq}a{\in}R$ such that r+a = 1. In this paper, we introduce and investigate the identity-summand graph of R, denoted by ${\Gamma}(R)$. It is the (undirected) graph whose vertices are the non-identity identity-summands of R with two distinct vertices joint by an edge when the sum of the vertices is 1. The basic properties and possible structures of the graph ${\Gamma}(R)$ are studied.

TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.159-176
    • /
    • 2015
  • Let R be a semiring, I a strong co-ideal of R and S(I) the set of all elements of R which are not prime to I. In this paper we investigate some interesting properties of S(I) and introduce the total identity-summand graph of a semiring R with respect to a co-ideal I. It is the graph with all elements of R as vertices and for distinct x, $y{\in}R$, the vertices x and y are adjacent if and only if $xy{\in}S(I)$.

TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO IDENTITY-SUMMAND ELEMENTS

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.593-607
    • /
    • 2014
  • Let R be an I-semiring and S(R) be the set of all identity-summand elements of R. In this paper we introduce the total graph of R with respect to identity-summand elements, denoted by T(${\Gamma}(R)$), and investigate basic properties of S(R) which help us to gain interesting results about T(${\Gamma}(R)$) and its subgraphs.