References
- A. Abbasi and S. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012), no. 1, 85-98. https://doi.org/10.4134/JKMS.2012.49.1.085
- S. Akbari, D. Kiani, F. Mohammadi, and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009), no. 12, 2224-2228. https://doi.org/10.1016/j.jpaa.2009.03.013
- D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
- D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zeoro element, J. Algebra Appl. 11 (2012), no. 4, 1250074, 18 pp. https://doi.org/10.1142/S0219498812500740
- D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (2013), no. 5, 1250212, 18 pp. https://doi.org/10.1142/S021949881250212X
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
- T. Asir and T. Chelvam, The intersection graph of gamma sets in the total graph II, J. Algebra Appl. 12 (2013), no. 4, 1250199, 18 pp. https://doi.org/10.1142/S021949881250199X
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison Wesley Publishing Company, 1969.
- M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043-2050. https://doi.org/10.1081/AGB-200063357
- Z. Barati, K. Khashyarmanesh, F. Mohammadi, and K. Nafar, On the associated graphs to a commutative ring, J. Algebra Appl. 12 (2013), 1250184. https://doi.org/10.1142/S0219498812501848
- I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
- A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244. Springer, New York, 2008.
- T. Chelvam and T. Asir, On the total graph and its complement of a commutative ring, Comm. Algebra 41 (2013), no. 10, 3820-3835. https://doi.org/10.1080/00927872.2012.678956
- T. Chelvam and T. Asir, The intersection graph of gamma sets in the total graph I, J. Algebra Appl. 12 (2013), 1250198, 18 pp. https://doi.org/10.1142/S0219498812501988
- S. Ebrahimi Atani, The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Mat. Ser. III 43(63) (2008), no. 2, 309-320. https://doi.org/10.3336/gm.43.2.06
- S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glas. Mat. Ser. III 44(64) (2009), no. 1, 141-153. https://doi.org/10.3336/gm.44.1.07
- S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel, Strong co-ideal theory in quotients of semirings, J. Adv. Res. Pure Math. 5 (2013), no. 3, 19-32. https://doi.org/10.5373/jarpm.1482.061212
- S. Ebrahimi Atani, The identity-summand graph of commutative semirings, J. Korean Math. Soc. 51 (2014), no. 1, 189-202. https://doi.org/10.4134/JKMS.2014.51.1.189
- S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total graph of a commutative semiring, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 21 (2013), no. 2, 21-33.
- S. Ebrahimi Atani and S. Habibi, The total torsion element graph of a module over a commutative ring, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 19 (2011), no. 1, 23-34.
- S. Ebrahimi Atani and A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc. 46 (2009), no. 2, 313-325. https://doi.org/10.4134/JKMS.2009.46.2.313
- J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers Dordrecht, 1999.
- J. Kist, Minimal Prime Ideals In Commutative Semigroups, Proc. Lond. Math. Soc. (3) 13 (1963), 31-50.
- H. Wang, On rational series and rational language, Theoret. Comput. Sci. 205 (1998), no. 1-2, 329-336.
Cited by
- THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING vol.52, pp.2, 2015, https://doi.org/10.4134/JKMS.2015.52.2.417
- TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL vol.52, pp.1, 2015, https://doi.org/10.4134/JKMS.2015.52.1.159