• 제목/요약/키워드: identity theorem

검색결과 46건 처리시간 0.023초

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.

ON RELATIVE CHINESE REMAINDER THEOREM

  • Park, Young-Soo;Rim, Seog-Hoon
    • 대한수학회보
    • /
    • 제31권1호
    • /
    • pp.93-97
    • /
    • 1994
  • Previously T.Porter [3] has given a relative Chinese Remainder Theorem under the hypothesis that given ring R has at least one .tau.-closed maximal ideal (by his notation Ma $x_{\tau}$(R).neq..phi.). In this short paper we drop his overall hypothesis that Ma $x_{\tau}$(R).neq..phi. and give the proof and some related results with this Theorem. In this paper R will always denote a commutative ring with identity element and all modules will be unitary left R-modules unless otherwise specified. Let .tau. be a given hereditarty torsion theory for left R-module category R-Mod. The class of all .tau.-torsion left R-modules, dented by J is closed under homomorphic images, submodules, direct sums and extensions. And the class of all .tau.-torsionfree left R-modules, denoted by F, is closed under taking submodules, injective hulls, direct products, and isomorphic copies ([2], Proposition 1.7 and 1.10).

  • PDF

INVARIANCE OF DOMAIN THEOREM FOR DEMICONTINUOUS MAPPINGS OF TYPE ( $S_+$)

  • Park, Jong-An
    • 대한수학회보
    • /
    • 제29권1호
    • /
    • pp.81-87
    • /
    • 1992
  • Wellknown invariance of domain theorems are Brower's invariance of domain theorem for continuous mappings defined on a finite dimensional space and Schauder-Leray's invariance of domain theorem for the class of mappings I+C defined on a infinite dimensional Banach space with I the identity and C compact. The two classical invariance of domain theorems were proved by applying the homotopy invariance of Brower's degree and Leray-Schauder's degree respectively. Degree theory for some class of mappings is a useful tool for mapping theorems. And mapping theorems (or surjectivity theorems of mappings) are closely related with invariance of domain theorems for mappings. In[4, 5], Browder and Petryshyn constructed a multi-valued degree theory for A-proper mappings. From this degree Petryshyn [9] obtained some invariance of domain theorems for locally A-proper mappings. Recently Browder [6] has developed a degree theory for demicontinuous mapings of type ( $S_{+}$) from a reflexive Banach space X to its dual $X^{*}$. By applying this degree we obtain some invariance of domain theorems for demicontinuous mappings of type ( $S_{+}$). ( $S_{+}$).

  • PDF

MORE ON THE 2-PRIME IDEALS OF COMMUTATIVE RINGS

  • Nikandish, Reza;Nikmehr, Mohammad Javad;Yassine, Ali
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.117-126
    • /
    • 2020
  • Let R be a commutative ring with identity. A proper ideal I of R is called 2-prime if for all a, b ∈ R such that ab ∈ I, then either a2 or b2 lies in I. In this paper, we study 2-prime ideals which are generalization of prime ideals. Our study provides an analogous to the prime avoidance theorem and some applications of this theorem. Also, it is shown that if R is a PID, then the families of primary ideals and 2-prime ideals of R are identical. Moreover, a number of examples concerning 2-prime ideals are given. Finally, rings in which every 2-prime ideal is a prime ideal are investigated.

ASSOCIATED PRIME IDEALS OF A PRINCIPAL IDEAL

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제8권1호
    • /
    • pp.87-90
    • /
    • 2000
  • Let R be an integral domain with identity. We show that each associated prime ideal of a principal ideal in R[X] has height one if and only if each associated prime ideal of a principal ideal in R has height one and R is an S-domain.

  • PDF