• Title/Summary/Keyword: idealized models

Search Result 102, Processing Time 0.023 seconds

A Study on the System Identification of Tunnel Lining Using Static Deformation Data (정적 내공변위를 이용한 터널라이닝 손상 검출기법에 관한 연구)

  • 이준석;최일윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.153-160
    • /
    • 2002
  • A new system identification method based on tunnel deformation data is proposed to find the damage in the lining structure. For this, an inverse problem in which the deformation data and dead load of concrete lining are known a priori is introduced to estimate the degree and location of the damages. Models based on uniform reduction of stiffness and homogenized crack concept are individually employed to compare the applicability and relative advantages of the models. Numerical analyses are peformed for the idealized tunnel structure and the effect of white noise, common in most measurement data, is also included to better understand the suitability of the proposed models. As a result, model 1 based on uniform stiffness reduction method is shown to be relatively insensitive to the noise, while model 2 with the homogenized crack concept is proven to be easily applied to the field situation since the effect of stiffness reduction is rather small.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

Analysis of Micromechanical Behavior for Fiber-Reinforced Composites (섬유 보강 복합재료의 미시역학적 거동 해석)

  • Jeong Jae Youn;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1435-1450
    • /
    • 2004
  • The investigation, which includes the material homogenization and the calculation of local stress concentration of long-fibrous composites in a microscopic level, has been performed to analyze the behavior of fiber-reinforced composites by using finite element method. In order to carry out this study, the finite element models of composites have been generated by the idealized arrays as square and hexagonal-packed type. In the FE analysis, the boundary conditions of micromechanical finite element method(MFEM) have been defined and verified by comparing with the results from multi-cells, and the effective material properties of composites composed of graphite/epoxy have been also evaluated by rules of mixture. For acquiring the relation between the global and local behaviors of composites, the magnifications of strain, stress, and interfacial stress of composites subjected to a longitudinal and transverse loading respectively have been calculated. And the magnifications have been proposed as the stress concentration in the microscopic level at composite material.

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

Progressive Fatigue Reliability Analysis of Offshore Structures (해양구조물의 진전하는 피로파괴에 대한 신뢰도해석)

  • Ryu, Jeong Soo;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 1992
  • The primary objective of this study is the development of the system reliability analysis of offshore structures against progressive fatigue failure. Two methods based on the second moment reliability methods are used. One is the improved first order reliability method(IFORM) and the other is the modified probabilistic network evaluation technique(MPNET). Using idealized parallel member models, reliability analyses for progressive fatigue failures are carried out for various cases with multiple members composed of multiple connecting joints per member. Numerical results indicate that the effectiveness of the used methods over the conventional ones (i.e. the FORM and the PNET) increases very significantly as the number of failure modes of the system increases.

  • PDF

Stress Fields Along Semi-Elliptical Interfacial Crack Front with Yield-Strength-Mismatch (항복강도 불일치 반타원 계면균열 선단에서의 응력장)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.126-137
    • /
    • 2003
  • Many research works have been performed on the J-T approach for elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed fur more practical 3D structures than the idealized plane strain specimens. The present study deals mainly with 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes fur semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. The validity of J-T approach is thereby extended to 3D yield-strength-mismatched weld joints, and useful information is inferred fur the design or assessment of pipe welds.

Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures (제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR)

  • Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.71-77
    • /
    • 2002
  • We consider the simultaneous slewing and vibration suppression control problem of an idealized structural model which has a rigid hub with two cantilevered flexible appendages and finite tip masses. The finite clement method(FEM) is used to obtain linear finite dimensional equations of motion for the model. In the linear quadratic regulator(LQR) problem, a simple method is introduced to provide a physically meaningful performance index for space structure models. This method gives us a mathematically minor but physically important modification of the usual energy type performance index. A numerical procedure to solve a time-variant LQR problem with inequality control constraints is presented using the method of particular solutions.

Prediction of Non-linear Behavior of Flexible Matrix Composites (유연수지를 기지재료로 하는 복합재료의 비선형거동 예측)

  • 서영욱;우경식
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.24-31
    • /
    • 2006
  • In this paper, mechanical behavior of unidirectional composites with flexible matrix was predicted by geometrical non-linear finite element analysis. Two typical idealized unit cells of square and hexagonal fiber arrays were modeled and these were subjected to different loadings. The stress-strain behavior of composites was predicted from which the effective properties were calculated. The hyperelasticity of polyurethane matrix was considered using Mooney-Rivlin model. In result, the stress-strain behavior of flexible composites shows non-linearity, especially it is remarkable under transverse normal and shear loading conditions. In this cases, there are great difference between square and hexagonal fiber array models.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.